Astronomical Optics and Elasticity Theory

Active Optics Methods

Bearbeitet von
Gérard René Lemaitre

ISBN 978 3 540 68904 1
Format (B x L): 15,5 x 23,5 cm
Gewicht: 1057 g
Contents

Notations .. xix

1 **Introduction to Optics and Elasticity** .. 1
1.1 Optics and Telescopes – Historical Introduction 1
1.1.1 The Greek Mathematicians and Conics 1
1.1.2 The Persian Mathematicians and Mirrors 3
1.1.3 End of European Renaissance and Birth of Telescopes 5
1.1.4 Refractive Telescopes .. 6
1.1.5 Reflective Telescopes ... 13
1.2 Snell’s Law and Glass Dispersion ... 26
1.3 Fermat’s Principle .. 29
1.4 Gaussian Optics and Conjugate Distances 31
1.4.1 Diopter of Curvature $c = 1/R$ 32
1.4.2 Mirror in Medium n .. 34
1.4.3 Power of Combined Systems .. 35
1.4.4 Lens in Air or in Vacuum .. 35
1.4.5 Afocal Systems .. 36
1.4.6 Pupils and Principal Rays ... 37
1.4.7 Aperture Ratio or Focal Ratio 37
1.5 Lagrange Invariant ... 38
1.6 Étendue Invariant and Lagrange Invariant 39
1.6.1 Lagrange Invariant .. 39
1.6.2 Étendue Invariant .. 39
1.6.3 Equivalence of the Étendue and Lagrange Invariants 40
1.7 Analytical Representation of Optical Surfaces 41
1.7.1 Conicoids ... 42
1.7.2 Spheroids ... 43
1.7.3 Non-Axisymmetric Surfaces and Zernike Polynomials 43
1.8 Seidel Representation of Third-Order Aberrations 45
1.8.1 The Seidel Theory .. 45
1.8.2 Seidel Aberration Modes – Elastic Deformation Modes 49
1.8.3 Zernike rms Polynomials ... 50
1.9 Stigmatism, Aplanatism, and Anastigmatism 52
1.9.1 Stigmatism .. 52
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9.2</td>
<td>Aplanatism and Abbe’s Sine Condition</td>
<td>55</td>
</tr>
<tr>
<td>1.9.3</td>
<td>Anastigmatism</td>
<td>59</td>
</tr>
<tr>
<td>1.10</td>
<td>Petzval Curvature and Distortion</td>
<td>62</td>
</tr>
<tr>
<td>1.10.1</td>
<td>Petzval Curvature</td>
<td>62</td>
</tr>
<tr>
<td>1.10.2</td>
<td>Distortion</td>
<td>64</td>
</tr>
<tr>
<td>1.11</td>
<td>Diffraction</td>
<td>65</td>
</tr>
<tr>
<td>1.11.1</td>
<td>The Diffraction Theory</td>
<td>66</td>
</tr>
<tr>
<td>1.11.2</td>
<td>Diffraction from a Circular Aperture</td>
<td>68</td>
</tr>
<tr>
<td>1.11.3</td>
<td>Diffraction from an Annular Aperture</td>
<td>71</td>
</tr>
<tr>
<td>1.11.4</td>
<td>Point Spread Function (PSF) and Diffracted Aberrations</td>
<td>71</td>
</tr>
<tr>
<td>1.11.5</td>
<td>Diffraction-Limited Criteria and Wavefront Tolerances</td>
<td>72</td>
</tr>
<tr>
<td>1.12</td>
<td>Some Image Processor Options</td>
<td>75</td>
</tr>
<tr>
<td>1.12.1</td>
<td>Human Eye</td>
<td>76</td>
</tr>
<tr>
<td>1.12.2</td>
<td>Eyepiece</td>
<td>77</td>
</tr>
<tr>
<td>1.12.3</td>
<td>Interferometer</td>
<td>77</td>
</tr>
<tr>
<td>1.12.4</td>
<td>Coronograph</td>
<td>78</td>
</tr>
<tr>
<td>1.12.5</td>
<td>Polarimeter</td>
<td>78</td>
</tr>
<tr>
<td>1.12.6</td>
<td>Slit Spectrograph</td>
<td>78</td>
</tr>
<tr>
<td>1.12.7</td>
<td>Slitless Spectrograph</td>
<td>79</td>
</tr>
<tr>
<td>1.12.8</td>
<td>Multi-Object Spectroscopy with Slits or Fiber Optics</td>
<td>80</td>
</tr>
<tr>
<td>1.12.9</td>
<td>Integral Field Spectrographs</td>
<td>81</td>
</tr>
<tr>
<td>1.12.10</td>
<td>Back-Surface Mirrors</td>
<td>84</td>
</tr>
<tr>
<td>1.12.11</td>
<td>Field Derotator</td>
<td>85</td>
</tr>
<tr>
<td>1.12.12</td>
<td>Pupil Derotator</td>
<td>86</td>
</tr>
<tr>
<td>1.12.13</td>
<td>Telescope Field Corrector</td>
<td>86</td>
</tr>
<tr>
<td>1.12.14</td>
<td>Atmospheric Dispersion Compensator</td>
<td>87</td>
</tr>
<tr>
<td>1.12.15</td>
<td>Adaptive Optics</td>
<td>89</td>
</tr>
<tr>
<td>1.13</td>
<td>Elasticity Theory</td>
<td>91</td>
</tr>
<tr>
<td>1.13.1</td>
<td>Historical Introduction</td>
<td>91</td>
</tr>
<tr>
<td>1.13.2</td>
<td>Elasticity Constants of Isotropic Materials</td>
<td>101</td>
</tr>
<tr>
<td>1.13.3</td>
<td>Displacement Vector and Strain Tensor</td>
<td>104</td>
</tr>
<tr>
<td>1.13.4</td>
<td>The Stress-Strain Linear Relations and Strain Energy</td>
<td>105</td>
</tr>
<tr>
<td>1.13.5</td>
<td>Uniform Torsion of a Rod and Strain Components</td>
<td>107</td>
</tr>
<tr>
<td>1.13.6</td>
<td>Love-Kirchhoff Hypotheses and Thin Plate Theory</td>
<td>110</td>
</tr>
<tr>
<td>1.13.7</td>
<td>Bending of Thin Plates and Developable Surfaces</td>
<td>111</td>
</tr>
<tr>
<td>1.13.8</td>
<td>Bending of Thin Plates and Non-developable Surfaces</td>
<td>116</td>
</tr>
<tr>
<td>1.13.9</td>
<td>Bending of Rectangular Plates of Constant Thickness</td>
<td>121</td>
</tr>
<tr>
<td>1.13.10</td>
<td>Axisymmetric Bending of Circular Plates of Constant Thickness</td>
<td>123</td>
</tr>
<tr>
<td>1.13.11</td>
<td>Circular Plates and Axisymmetric Loading Manifolds</td>
<td>124</td>
</tr>
<tr>
<td>1.13.12</td>
<td>Deformation of a Plate in a Gravity Field</td>
<td>126</td>
</tr>
<tr>
<td>1.13.13</td>
<td>Saint-Venant’s Principle</td>
<td>126</td>
</tr>
<tr>
<td>1.13.14</td>
<td>Computational Modeling and Finite Element Analysis</td>
<td>127</td>
</tr>
<tr>
<td>1.14</td>
<td>Active Optics</td>
<td>128</td>
</tr>
<tr>
<td>1.14.1</td>
<td>Spherical Polishing</td>
<td>128</td>
</tr>
<tr>
<td>1.14.2</td>
<td>Optical Surfaces Free from Ripple Errors</td>
<td>129</td>
</tr>
</tbody>
</table>
Contents

1.14.3 Active Optics and Time-Dependence Control 129
1.14.4 Various Aspect of Active Optics ... 130

References .. 130

2 Dioptrics and Elasticity – Variable Curvature Mirrors (VCMs) 137
2.1 Thin Circular Plates and Small Deformation Theory 137
 2.1.1 Plates of Constant Thickness Distribution – CTD 137
 2.1.2 Plates of Variable Thickness Distribution – VTD –
 Cycloid-Like form – Tulip-Like Form 139
 2.1.3 Optical Focal-Ratio Variation .. 144
 2.1.4 Buckling Instability ... 144
2.2 Thin Plates and Large Deformation Theory – VTD 145
2.3 The Mersenne Afocal Two-Mirror Telescopes 150
2.4 Beam Compressors, Expanders and Cat’s Eyes – Active Optics
 Pupil Transfers .. 153
2.5 VCMs as Field Compensators of Interferometers 154
 2.5.1 Fourier Transform Spectrometers .. 155
 2.5.2 Stellar Interferometers and Telescope Arrays 156
2.6 Construction of VCMs with VTDs ... 158
 2.6.1 Elastic Deformability and Choice of Material Substrate 158
 2.6.2 Zoom Range and Choice of a Thickness Distribution 160
 2.6.3 Achievement of Boundary Conditions 160
 2.6.4 Design and Results with VTD Type 1 – Cycloid-Like Form 161
 2.6.5 Design and Results with a VTD Type 2 – Tulip-Like Form 162
2.7 Plasticity and Hysteresis ... 163
 2.7.1 Stress-Strain Linearization and Plasticity Compensation 163
 2.7.2 Hysteresis Compensation and Curvature Control 166

References ... 168

3 Active Optics and Correction of Third-Order Aberrations 171
3.1 Elasticity Theory with Constant Thickness Distributions – CTD
 Class .. 171
3.2 Elasticity Theory with Variable Thickness Distributions – VTD
 Class .. 171
3.3 Active Optics and Third-Order Spherical Aberration 177
 3.3.1 Configurations in the CTD Class (A_1 = A_2 = 0) 178
 3.3.2 Configurations in the VTD Class ... 179
 3.3.3 Hybrid Configurations ... 182
 3.3.4 Balance with a Curvature Mode ... 184
 3.3.5 Examples of Application .. 185
3.4 Active Optics and Third-Order Coma ... 188
 3.4.1 Configuration in the CTD Class (A_1 = 0) 189
 3.4.2 Configuration in the VTD Class ... 190
 3.4.3 Hybrid Configurations ... 192
 3.4.4 Balance with a Tilt Mode ... 192
3.4.5 Coma from a Pupil and Concave Mirror System 194
3.4.6 Examples of Active Optics Coma Correction 195
3.5 Active Optics and Third-Order Astigmatism 198
 3.5.1 Configuration in the CTD Class \((A_2 = 0)\) 199
 3.5.2 Configuration in the VTD Class 200
 3.5.3 Hybrid Configurations 201
 3.5.4 Balance with a Curvature Mode and Cylindric
 Deformations 201
 3.5.5 Sagittal and Tangential Ray Fans in Mirror Imaging 202
 3.5.6 Aspherization of Concave Mirrors – Examples 206
 3.5.7 Concave Diffraction Gratings and Saddle Correction .. 209
 3.5.8 Aspherization of Single Surface Spectrographs – Example 212
 3.5.9 Higher-Order Aspherizations of Single Surface
 Spectrographs 213
References .. 214

4 Optical Design with the Schmidt Concept – Telescopes and
Spectrographs .. 217
 4.1 The Schmidt Concept .. 217
 4.1.1 The Class of Two-Mirror Anastigmatic Telescopes 217
 4.1.2 Wavefront Analysis at the Center of Curvature
 of a Spherical Mirror 222
 4.1.3 Wavefront Equation Including the Magnification Ratio \(M\) 225
 4.1.4 Optical Design of Correctors – Preliminary Remarks 225
 4.1.5 Object at Infinity – Null Power Zone Positioning ... 226
 4.1.6 Optical Equation of Various Corrective Elements 227
 4.1.7 Under or Over Correction Factor \(s\) 228
 4.2 Refractive Corrector Telescopes 229
 4.2.1 Off-axis Aberrations and Chromatism of a Singlet
 Corrector ... 229
 4.2.2 Achromatic Doublet-Plate Corrector 232
 4.2.3 Singlet Corrector in Blue and Additional Monocentric
 Filters in Red 233
 4.3 All-Reflective Telescopes 234
 4.3.1 Centered Optical Systems used Off-axis 235
 4.3.2 Non-Centered Optical Systems 237
 4.3.3 Gain of Non-Centered Systems Over Centered Designs 239
 4.3.4 LAMOST: A Giant Non-Centered Schmidt
 with Active Optics 240
 4.4 All-Reflective Spectrographs with Aspherical Gratings 242
 4.4.1 Comparison of Reflective Grating Spectrograph Designs 242
 4.4.2 Diffraction Grating Equation 243
 4.4.3 Axisymmetric Gratings \((\beta_0 = 0)\) 244
 4.4.4 Bi-Axial Symmetric Gratings \((\beta_0 \neq 0)\) 245
 4.4.5 Flat Fielding of All-Reflective Aspherized
 Grating Spectrographs 246
5 Schmidt Correctors and Diffraction Gratings Aspherized by Active Optics ... 263
 5.1 Various Types of Aspherical Schmidt Correctors 263
 5.2 Refractive Correctors ... 263
 5.2.1 Third-Order Optical Profile of Refractive Correctors 263
 5.2.2 Elasticity and Circular Constant Thickness Plates 264
 5.2.3 Refractive Correctors and the Spherical Figuring Method .. 265
 5.2.4 Refractive Correctors and the Plane Figuring Method 268
 5.2.5 Glass Rupture and Loading Time Dependance 273
 5.3 Reflective Correctors .. 276
 5.3.1 Optical Figure of the Primary Mirror 276
 5.3.2 Axisymmetric Circular Primaries with \(k = \frac{3}{2} \) – Vase Form ... 277
 5.3.3 Bisymmetric Circular Primaries with \(k = \frac{3}{2} \) – MDM 279
 5.3.4 Bisymmetric Circular Primaries with \(k = 0 \) – Tulip Form . 279
 5.3.5 Bisymmetric Elliptical Primary Mirror with \(k = \frac{3}{2} \) – Vase Form – Biplate Form 282
 5.3.6 LAMOST: A Segmented Bisymmetric Elliptical Primary . 293
 5.4 Aspherized Reflective Diffraction Gratings 293
 5.4.1 Active Optics Replication for Grating Aspherization 293
 5.4.2 Optical Profile of Aspherical Reflective Gratings 294
 5.4.3 Axisymmetric Gratings with \(k = \frac{3}{2} \) and Circular Built-in Submasters ... 296
 5.4.4 Axisymmetric Gratings with \(k = 0 \) and Circular Simply Supported Submasters ... 302
 5.4.5 Bisymmetric Gratings with \(k = \frac{3}{2} \) and Elliptic Built-in Submasters ... 304
 5.4.6 Constructional Replication Condition for Active Optics Process ... 309
 References .. 310

6 Theory of Shells and Aspherization of Axisymmetric Mirrors – Meniscus, Vase and Closed Forms 313
 6.1 Active Optics Aspherization of Fast f-Ratio Mirrors................. 313
 6.2 Theory of Shallow Spherical Shells 313
6.2.1 Equilibrium Equations for Axisymmetric Loadings 314
6.2.2 General Equation of Shallow Spherical Shells 315
6.2.3 Kelvin Functions .. 318
6.2.4 Flexure and Stress Function of Shallow Spherical Shells 320
6.3 Variable Thickness Shell and Continuity Conditions 322
6.3.1 Shell Relations for a Constant Thickness Ring Element 323
6.3.2 Various Boundaries and Constant Thickness Plain Shells 323
6.3.3 Some Quantities Involved in a Variable Thickness Shell 324
6.3.4 Continuity Conditions of a Shell Element Ring 325
6.4 Edge Cylinder Link and Boundary Conditions 327
6.4.1 Three Geometrical Configurations and Boundaries 327
6.4.2 Outer Cylinder Linked to a Meniscus Shell 328
6.5 Determination of a Variable Thickness Vase Shell 332
6.5.1 Flexure Representation in the Shell \(z, r \) Main Frame 332
6.5.2 Inverse Problem and Thickness Distribution 333
6.6 Active Optics Aspherization of Telescope Mirrors 333
6.6.1 Active Optics Co-addition Law .. 333
6.6.2 Parabolization of Concave Mirrors ... 334
6.6.3 Concave Paraboloid Mirrors with a Central Hole 339
6.6.4 Aspherization of Concave Spheroid Mirrors 342
6.6.5 Aspherization of Cassegrain Mirrors .. 345
6.6.6 Comparison of Various Wide-Field Telescope Designs 350
6.6.7 Modified-Rumsey Three-Reflection Telescope Mirrors 352
6.6.8 Mirror Aspherizations of a Large Modified-Rumsey Telescope 360
References ... 363

7 Active Optics with Multimode Deformable Mirrors (MDM) Vase
and Meniscus Forms .. 365
7.1 Introduction – Clebsch-Seidel Deformation Modes 365
7.2 Elasticity and Vase-Form MDMs ... 366
7.3 Elasticity and Meniscus-Form MDMs .. 374
7.4 Degenerated Configurations and Astigmatism Mode 376
7.4.1 Special Geometry for the Astigmatism Mode 376
7.4.2 Single Astm 3 Mode and Degenerated Meniscus Form 377
7.4.3 Single Astm 3 Mode and Degenerated Vase Form 378
7.5 Meniscus Form and Segments for Large Telescopes 378
7.5.1 Off-Axis Segments of a Paraboloid Mirror 379
7.5.2 Off-Axis Segments of a Conicoid Mirror 383
7.5.3 Segments of the Keck Telescope ... 384
7.6 Vase and Meniscus MDMs for Reflective Schmids 385
7.6.1 Centered Systems with a Circular Vase-Form Primary 385
7.6.2 Non-Centered Systems and Circular Vase-Form Primary 386
7.6.3 Non-Centered Systems and Elliptical Vase-Form Primary 388
7.6.4 In-situ Aspherized Meniscus Segments of LAMOST 388
7.7 Vase MDMs for Liquid Mirror Telescopes 390
 7.7.1 Zenithal Observations with LMTs 390
 7.7.2 Field Distortions and Four-Lens Correctors for LMTs 391
 7.7.3 LMT Concepts with MDMs for Off-Zenith Observations 392
7.8 MDMs as Recording Compensators for Holographic Gratings 395
 7.8.1 Holographic Gratings Correcting Aberrations 395
 7.8.2 Design Example for the COS Gratings of HST–Recording Parameters .. 396
 7.8.3 Elasticity Design of a Six-Arm MDM as Recording Compensator .. 398
7.9 Degenerated Configurations and Triangle Mode 402
 7.9.1 Special Geometry for the Triangle Mode 402
 7.9.2 Single Tri 3 Mode and Degenerated Meniscus Form 402
 7.9.3 Single Tri 3 Mode and Degenerated Vase Form 403
7.10 Single Mode and Deformable Outer Ring 404
 7.10.1 Outer Ring Designs for High Accuracy Correction 404
 7.10.2 Ring with Axial Thickness Variation 404
 7.10.3 Ring with Forces Acting on Angular Bridges 404
7.11 Future Giant Telescopes and Segment Aspherization 405
 7.11.1 Current Trends in Giant Telescope Concepts 405
 7.11.2 Active Optics Aspherization of Mirror Segments 406
7.12 Vase Form and Middle Surface 407
7.13 Vase Form and Saint-Venant’s Principle 408
References .. 408

8 Own Weight Flexure and Figure Control of Telescope Mirrors 413
 8.1 Primary Mirror Support Systems Against Gravity 413
 8.1.1 Introduction .. 413
 8.1.2 Axial and Lateral Support System Concepts 413
 8.1.3 Some Examples of Primary Mirror Geometries 415
 8.2 Density and Thermal Constants of Mirror Substrates 416
 8.3 Substrates for Large Mirrors 418
 8.4 Stiffness and Elastic Deformability Criteria 421
 8.4.1 Mirror Materials and Stiffness Criteria 421
 8.4.2 Mirror Materials and Elastic Deformability Criterion 422
 8.5 Axial Flexure of Large Mirrors Under Gravity 423
 8.5.1 Density Distribution of Mirror Support Pads 423
 8.5.2 Flexure of a Mirror Sub-Element Supported by a Ring Pad . 424
 8.5.3 Density Criterion for Pad Distribution – Couder’s Law . . 428
 8.5.4 Other Axial Flexure Features 431
 8.5.5 Finite Element Analysis 437
 8.6 Lateral Flexure of Large Mirrors Under Gravity 437
 8.6.1 Various Supporting Force Distributions 437
 8.6.2 Flexure of a Mirror Supported at its Lateral Edge 439
8.6.3 Other Force Distributions and Skew Surface of Forces . . . 441
8.6.4 Finite Element Analysis .. 443

8.7 Active Optics and Active Alignment Controls 443
8.7.1 Introduction and Definitions 443
8.7.2 Monolithic Mirror Telescopes 445
8.7.3 Segmented Mirror Telescopes 448
8.7.4 Cophasing of Future Extremely Large Telescopes 452

8.8 Special Cases of Highly Variable Thickness Mirrors 452
8.8.1 Introduction – Mirror Flexure in Fast Tip-Tilt Mode 452
8.8.2 Minimum Flexure in Gravity of a Plate Supported at its Center .. 453
8.8.3 Field Stabilization Mirrors and Infrared Wobbling Mirrors 457
8.8.4 Design of Low Weight Wobbling Mirrors 459

References .. 459

9 Singlet Lenses and Elasticity Theory of Thin Plates 465
9.1 Singlet Lenses .. 465
9.1.1 Aberrations of a Thin Lens with Spherical Surfaces 465
9.1.2 Stigmatic Lens with Descartes Ovoid and Spherical Surface .. 468
9.1.3 Aplanatic and Anastigmatic Singlet Lenses 469
9.1.4 Isoplanatic Singlet Lenses and Remote Pupil 471
9.1.5 Aspheric Lenses in the Third-Order Theory 473
9.1.6 Power of a Two-Lens System 474
9.2 Thin Lens Elastically Bent by Uniform Load 475
9.2.1 Equilibrium Equation of the Thin Plate Theory 475
9.2.2 Lens Deformation and Parabolic Thickness Distribution 476
9.2.3 Expansion Representation of the Flexure 479
9.2.4 Maximum Stresses at the Lens Surfaces 480
9.2.5 Lenses with Particular Thickness Distributions 487
9.2.6 Conclusions for Active Optics Aspherization 487
9.3 Spectrograph with Single Lens and Corrector Plate 488
References .. 490

10 X-ray Telescopes and Elasticity Theory of Shells 491
10.1 X-ray Telescopes ... 491
10.1.1 Introduction – The Three Wolter Design Forms 491
10.1.2 Basic Stigmatic Paraboloid-Hyperboloid (PH) Telescopes 491
10.1.3 Sine Condition and Wolter-Schwarzschild (WS) Telescopes .. 495
10.1.4 Aberration Balanced Hyperboloid-Hyperboloid (HH) Telescopes .. 497
10.1.5 Aberration Balanced Spheroid-Spheroid (SS) Telescopes . 499
10.1.6 Existing and Future Grazing Incidence X-ray Telescopes . 499
10.2 Elasticity Theory of Axisymmetric Cylindrical Shells 501

References .. 501
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2.1</td>
<td>X-ray Mirrors and Super-Smoothness Criterion</td>
<td>501</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Elasticity Theory of Thin Axisymmetric Cylinders</td>
<td>501</td>
</tr>
<tr>
<td>10.2.3</td>
<td>Radial Thickness Distributions and Parabolic Flexure</td>
<td>504</td>
</tr>
<tr>
<td>10.2.4</td>
<td>Radial Thickness Distributions and 4th-Degree Flexure</td>
<td>509</td>
</tr>
<tr>
<td>10.2.5</td>
<td>Thickness Distributions for Tubular Image Transports</td>
<td>510</td>
</tr>
<tr>
<td>10.3</td>
<td>Elasticity Theory of Weakly Conical Tubular Shells</td>
<td>514</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Flexure Condition for Pure Extension</td>
<td>514</td>
</tr>
<tr>
<td></td>
<td>of Axisymmetric Shells</td>
<td></td>
</tr>
<tr>
<td>10.3.2</td>
<td>Truncated Conical Shell Geometry and Cylindrical Flexure</td>
<td>515</td>
</tr>
<tr>
<td>10.3.3</td>
<td>Linear Product Law – Flexure-Thickness Relation</td>
<td>516</td>
</tr>
<tr>
<td>10.4</td>
<td>Active Optics Aspherization of X-ray Telescope Mirrors</td>
<td>517</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Thickness Distributions for Monolithic Tubular Mirrors</td>
<td>517</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Boundaries for Segment Mirrors of Large Tubular Telescopes</td>
<td>519</td>
</tr>
<tr>
<td>10.4.3</td>
<td>Concluding Remarks on the Aspherization Process</td>
<td>521</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>522</td>
</tr>
</tbody>
</table>

Portrait Gallery... 525

Acronyms.. 537

Glossary... 539

Author Index... 555

Subject Index... 561

About the Author.. 575