System Dynamics and Mechanical Vibrations

An Introduction

Bearbeitet von
Dietmar Findeisen

ISBN 978 3 540 67144 2
Format (B x L): 15,5 x 23,5 cm
Gewicht: 1660 g

Weitere Fachgebiete > Technik > Werkstoffkunde, Mechanische Technologie > Statik, Dynamik, Kinetik, Kinematik

schnell und portofrei erhältlich bei

beck-shop.de
DIE FACHBUCHHANDLUNG

Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte.
1 Theory of Dynamic Systems

1.1 Definitions and Overview of Systems Modelling

1.2 General Classification of Dynamical System Variables

1.2.1 Classification in Terms of Spatial Relationships

1.2.2 Classification in Terms of Local Energy State

2 System Representation by Diagrams (Model System)

2.1 Block-diagram and Signal-flow-diagram Representation

2.1.1 Transfer Function Block Diagram

2.1.2 Control System Structure

2.1.3 Control System Design. Fundamental Aspects

2.1.4 Signal Flow Graphs. Reduction of the Diagram

2.2 Two-port-diagram Representation

2.2.1 Generic Two-port Network

2.2.2 Connection of Two Ports

2.2.3 Mechanical Two Ports

2.2.4 Fundamental Mechanical Elements and Connections

2.2.5 Supplementary Mechanical Elements. Couplers and Sources

2.2.6 Connections with Block Diagrams. Transfer Function Block Diagrams

2.2.7 Analysis of Complex System Structures. Fluid System

2.3 Network-diagram Representation (Circuit Diagram)

2.3.1 Direct Representation of Simple Systems by Networks

2.3.2 Fundamental and Supplementary Mechanical Elements

2.3.3 Construction of Mechanical Network Diagram. Mechanical Circuit

2.3.4 Derivation of Mechanical Network Equations. Equation of Motion

2.3.5 Connections with Signal-flow Diagrams. Oriented Linear Graphs

2.4 Combined-flow-diagram Representation

2.4.1 Symbolic Measurement of Dynamical System Variables

2.4.2 Symbolic Regulation of Supplementary Elements. Couplers and Controlled Sources

2.4.3 Connections between Network and Block Diagrams. Mixed Domain System Structures

2.5 Bond-graph Representation (Multiports)

2.5.1 Classification of Multiports

2.5.2 Conventions for Interconnected Multiports. Augmented Bond Graphs

2.5.3 Fundamental Interconnective Relationships. Generalized Kirchhoff’s Laws

2.5.4 Construction of Mechanical Bond Graph. Mechanical Multiport
2.6 Comparison of Diagram Representations (References to Applications)
 2.6.1 Schematic Diagrams. Visually Descriptive Diagrams
 2.6.2 Systematic Diagrams. Interconnection Diagrams

3 System Representation by Equations (Mathematical Model)
 3.1 Representation of Mechanical Systems by Differential Equations of Motion
 (Classical Method)..
 3.1.1 System Specifications by Normalization of the Differential
 Equation ..
 3.1.2 Free and Forced Response of Damped Second-order Systems
 3.1.3 Forced Response of a Single Degree-of-freedom System to
 Complex Excitation. Phasor-response Analysis

 3.2 Representation of Mechanical Systems by Integral-transformed
 Models (Transform Methods)..
 3.2.1 Periodic Vibration. Fourier Series Analysis
 3.2.2 Non-periodic Vibration. The Fourier Integral
 3.2.3 Fourier Transform Method. Frequency-response Analysis
 3.2.4 System Response to Transient Excitation. Pulse-type Functions
 3.2.5 Random Vibration. Data Processing
 3.2.6 System Response to Random Excitation. White Noise
 3.2.7 Transient Vibration. The Laplace Integral
 3.2.8 Laplace Transform Method. Transfer-function Analysis
 3.2.9 System Response to Transient Excitation. Step-type Functions ...
 3.2.10 The Graphical Interpretation of the Transfer Function.
 Conformal Mapping
 3.2.11 The Graphical Interpretation of the Frequency-response Function.
 Frequency Response Plots

 3.3 Comparison of Fourier and Laplace Transform Methods (References to
 Applications)..
 3.3.1 Fourier Transform Method. Advantages and Disadvantages
 3.3.2 Laplace Transform Method. Advantages and Disadvantages

4 Transform Analysis Methods of Vibrating Systems (Frequency-
 response Characteristics) ..
 4.1 Formulation of Dynamical Equations (Equations of Motion)
 4.1.1 Analytical Dynamics. Mathematical System by Analytical
 Methods
 4.1.2 Synthetical Dynamics. Mathematical System by Synthetical
 Methods

 4.2 Frequency-response Characteristics (Concepts of Mobility and Dynamic
 Compliance)...
 4.2.1 Equivalent Definitions of Frequency-response Function
 4.2.2 Dynamic Characteristics of Mechanical Elements. Component
 Mobilities and Dynamic Compliances
4.2.3 Dynamic Characteristics of Composite Systems. *Overall Mobility and Dynamic Compliance* ...

4.2.4 General Transform Analysis Principles. *Mechanical Circuit Theorems* ...

4.2.5 Graphical Methods to Mechanical System Design. *Selecting Vibratory Specifications by Polar Diagrams*

4.2.6 Some Exercises in Transform Analysis Methods. *Applying Dynamic Compliance Techniques* ..

5 The Flow of Power and Energy in Systems (Energy Transactions)...

5.1 Power Transmission through Linear Two Ports (Generalized Transport Process) ..

5.1.1 The Transmission Problem of Two-port Networks. *Unrestricted Terminal Conditions* ...

5.1.2 The Transmission Problem related to Complex Power. *Generalized Quadratic Forms* ...

5.1.3 The Power Transmission Factor. *Generalized Transmission Ratio* ..

5.2 Power Transmission through Mechanical Networks (Generalized Impedance) ..

5.2.1 The Transmission Problem of One-port Networks. *Functional Relationships* ...

5.2.2 The Transmission Problem related to Complex Power. *Phasor Power* ..

5.2.3 Connections with Frequency-response Characteristics. *Combining Dynamic Compliance and Phasor Power Concepts*

Appendix A

Response Time Histories
(Force- and Displacement-time Histories) ..

Appendix B

Frequency Response Plots
(Normalized Dynamic Compliance and related Characteristics)

Appendix C

Frequency Response Plots of Power Flow (Normalized Complex Power)........

References ..