Dynamical Systems, Ergodic Theory and Applications

Bearbeitet von
L.A. Bunimovich, S.G. Dani, R.L. Dobrushin, M.V. Jakobson, I.P. Kornfeld, N.B. Maslova, Ya.B. Pesin,

erweitert, überarbeitet 2000. Buch. xi, 460 S. Hardcover
ISBN 978 3 540 66316 4
Format (B x L): 15,5 x 23,5 cm
Gewicht: 1850 g

Weitere Fachgebiete > Mathematik > Geometrie

schnell und portofrei erhältlich bei

beck-shop.de
DIE FACHBUCHHANDLUNG

Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte.
Contents

I. General Ergodic Theory of Groups of Measure Preserving Transformations 1

II. Ergodic Theory of Smooth Dynamical Systems 103

III. Dynamical Systems on Homogeneous Spaces 264

IV. The Dynamics of Billiard Flows in Rational Polygons 360

V. Dynamical Systems of Statistical Mechanics and Kinetic Equations 383

Subject Index 455
I. General Ergodic Theory of Groups
of Measure Preserving Transformations

Contents

Chapter 1. Basic Notions of Ergodic Theory and Examples
§ 1. Dynamical Systems with Invariant Measures 2
§ 2. First Corollaries of the Existence of Invariant Measures.
Ergodic Theorems 11
§ 3. Ergodicity. Decomposition into Ergodic Components.
Various Mixing Conditions 18
§ 4. General Constructions .. 23
 4.1. Direct Products of Dynamical Systems 23
 4.2. Skew Products of Dynamical Systems 24
 4.3. Factor-Systems ... 25
 4.4. Integral and Induced Automorphisms 25
 4.5. Special Flows and Special Representations of Flows 26
 4.6. Natural Extensions of Endomorphisms 28

Chapter 2. Spectral Theory of Dynamical Systems
(I.P. Kornfeld, Ya.G. Sinai) 30
§ 1. Groups of Unitary Operators and Semigroups of Isometric
 Operators Adjoint to Dynamical Systems 30
§ 2. The Structure of the Dynamical Systems with Pure Point
 and Quasicontinuous Spectra 33
§ 3. Examples of Spectral Analysis of Dynamical Systems 35
§ 4. Spectral Analysis of Gauss Dynamical Systems 36

Chapter 3. Entropy Theory of Dynamical Systems
(I.P. Kornfeld, Ya.G. Sinai) 38
§ 1. Entropy and Conditional Entropy of a Partition 39
§ 2. Entropy of a Dynamical System 40
§ 3. The Structure of Dynamical Systems of Positive Entropy 43
Contents

§ 4. The Isomorphy Problem for Bernoulli Automorphisms and K-Systems .. 45
§ 5. Equivalence of Dynamical Systems in the Sense of Kakutani ... 53
Chapter 4. Periodic Approximations and Their Applications.
Ergodic Theorems, Spectral and Entropy Theory for the General
Group Actions (I.P. Kornfeld, A.M. Vershik) 61
§ 1. Approximation Theory of Dynamical Systems by Periodic Ones.
Flows on the Two-Dimensional Torus 61
§ 2. Flows on the Surfaces of Genus $p \geq 1$ and Interval Exchange
Transformations .. 66
§ 3. General Group Actions ... 69
 3.1. Introduction .. 69
 3.2. General Definition of the Actions of Locally Compact
 Groups on Lebesgue Spaces 70
 3.3. Ergodic Theorems .. 71
 3.4. Spectral Theory ... 74
§ 4. Entropy Theory for the Actions of General Groups 76
Chapter 5. Trajectory Theory (A.M. Vershik) 80
§ 1. Statements of Main Results 80
§ 2. Sketch of the Proof. Tame Partitions 84
§ 3. Trajectory Theory for Amenable Groups 89
§ 4. Trajectory Theory for Non-Amenable Groups. Rigidity 91
§ 5. Concluding Remarks. Relationship Between Trajectory Theory
 and Operator Algebras .. 94
Bibliography .. 95
Additional Bibliography ... 101
II. Ergodic Theory of Smooth Dynamical Systems

Contents

The Elements of KAM-Theory (Ya.G. Sinai) 106
§ 1. Integrable and Nonintegrable Smooth Dynamical Systems.
 The Hierarchy of Stochastic Properties of Deterministic Dynamics 106
§ 2. The Kolmogorov-Arnold-Moser Theory (KAM-Theory) 109
Chapter 7. General Theory of Smooth Hyperbolic Dynamical Systems
(Ya.B. Pesin) 113
§ 1. Hyperbolicity of Individual Trajectories 113
 1.1. Introductory Remarks 113
 1.2. Uniform Hyperbolicity 114
 1.3. Nonuniform Hyperbolicity 115
 1.4. Local Manifolds 116
 1.5. Global Manifolds 118
§ 2. Basic Classes of Smooth Hyperbolic Dynamical Systems.
 Definitions and Examples 118
 2.1. Anosov Systems 118
 2.2. Hyperbolic Sets 121
 2.3. Locally Maximal Hyperbolic Sets 124
 2.4. Axiom A-Diffeomorphisms 125
 2.5. Hyperbolic Attractors. Repellers 126
 2.6. Partially Hyperbolic Dynamical Systems 128
 2.7. Mather Theory 129
 2.8. Nonuniformly Hyperbolic Dynamical Systems.
 Lyapunov Exponents 131
§ 3. Ergodic Properties of Smooth Hyperbolic Dynamical Systems 133
 3.1. u-Gibbs Measures 133
 3.2. Symbolic Dynamics 135
 3.3. Measures of Maximal Entropy 137
 3.4. Construction of u-Gibbs Measures 137
3.5. Topological Pressure and Topological Entropy 138
3.6. Properties of ν-Gibbs Measures 141
3.7. Small Stochastic Perturbations 142
3.8. Equilibrium States and Their Ergodic Properties 143
3.9. Ergodic Properties of Dynamical Systems with Nonzero
 Lyapunov Exponents 144
3.10. Ergodic Properties of Anosov Systems and of UPH-Systems 146
3.11. Continuous Time Dynamical Systems 149

§ 4. Hyperbolic Geodesic Flows 149
4.1. Manifolds with Negative Curvature 149
4.2. Riemannian Metrics Without Conjugate (or Focal) Points . . 153
4.3. Entropy of Geodesic Flows 156
4.4. Riemannian Metrics of Nonpositive Curvature 157

§ 5. Geodesic Flows on Manifolds with Constant Negative Curvature 158
§ 6. Dimension-like Characteristics of Invariant Sets for Dynamical
 Systems .. 161
6.1. Introductory Remarks 161
6.2. Hausdorff Dimension .. 161
6.3. Other Dimension Characteristics 164
 Carathéodory Dimension Characteristics 167
6.5. Examples of C-structures and Carathéodory
 Dimension Characteristics 169
6.6. Multifractal Formalism 176

§ 7. Coupled Map Lattices ... 182
Additional References .. 190

Chapter 8. Billiards and Other Hyperbolic Systems
(L.A. Bunimovich) ... 192
§ 1. Billiards .. 192
1.1. The General Definition of a Billiard 192
1.2. Billiards in Polygons and Polyhedrons 194
1.3. Billiards in Domains with Smooth Convex Boundary 196
1.4. Dispersing or Sinai Billiards 198
1.5. The Lorentz Gas and Hard Spheres Gas 206
1.6. Semi-dispersing Billiards and Boltzmann Hypotheses 206
1.7. Billiards in Domains with Boundary Possessing Focusing
 Components .. 209
1.8. Hyperbolic Dynamical Systems with Singularities
 (a General Approach) 215
1.9. Markov Approximations and Symbolic Dynamics
 for Hyperbolic Billiards 217
1.10. Statistical Properties of Dispersing Billiards
 and of the Lorentz Gas 219
1.11. Transport Coefficients for the Simplest Mechanical Models 222
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>§ 2.</td>
<td>Strange Attractors</td>
<td>224</td>
</tr>
<tr>
<td>2.1.</td>
<td>Definition of a Strange Attractor</td>
<td>224</td>
</tr>
<tr>
<td>2.2.</td>
<td>The Lorenz Attractor</td>
<td>225</td>
</tr>
<tr>
<td>2.3.</td>
<td>Some Other Examples of Hyperbolic Strange Attractors</td>
<td>230</td>
</tr>
<tr>
<td>Additional References</td>
<td></td>
<td>231</td>
</tr>
<tr>
<td>Chapter 9.</td>
<td>Ergodic Theory of One-Dimensional Mappings</td>
<td>234</td>
</tr>
<tr>
<td>(M.V. Jakobson)</td>
<td></td>
<td>234</td>
</tr>
<tr>
<td>§ 1.</td>
<td>Expanding Maps</td>
<td>234</td>
</tr>
<tr>
<td>1.1.</td>
<td>Definitions, Examples, the Entropy Formula</td>
<td>234</td>
</tr>
<tr>
<td>1.2.</td>
<td>Walters Theorem</td>
<td>237</td>
</tr>
<tr>
<td>§ 2.</td>
<td>Absolutely Continuous Invariant Measures</td>
<td>239</td>
</tr>
<tr>
<td>for Nonexpanding Maps</td>
<td></td>
<td>239</td>
</tr>
<tr>
<td>2.1.</td>
<td>Some Examples</td>
<td>239</td>
</tr>
<tr>
<td>2.2.</td>
<td>Intermittency of Stochastic and Stable Systems</td>
<td>241</td>
</tr>
<tr>
<td>2.3.</td>
<td>Ergodic Properties of Absolutely Continuous Invariant Measures</td>
<td>243</td>
</tr>
<tr>
<td>§ 3.</td>
<td>Feigenbaum Universality Law</td>
<td>245</td>
</tr>
<tr>
<td>3.1.</td>
<td>The Phenomenon of Universality</td>
<td>245</td>
</tr>
<tr>
<td>3.2.</td>
<td>Doubling Transformation</td>
<td>247</td>
</tr>
<tr>
<td>3.3.</td>
<td>Neighborhood of the Fixed Point</td>
<td>249</td>
</tr>
<tr>
<td>3.4.</td>
<td>Properties of Maps Belonging to the Stable Manifold of Φ</td>
<td>251</td>
</tr>
<tr>
<td>§ 4.</td>
<td>Rational Endomorphisms of the Riemann Sphere</td>
<td>252</td>
</tr>
<tr>
<td>4.1.</td>
<td>The Julia Set and Its Complement</td>
<td>252</td>
</tr>
<tr>
<td>4.2.</td>
<td>The Stability Properties of Rational Endomorphisms</td>
<td>254</td>
</tr>
<tr>
<td>4.3.</td>
<td>Ergodic and Dimensional Properties of Julia Sets</td>
<td>255</td>
</tr>
<tr>
<td>Bibliography</td>
<td></td>
<td>256</td>
</tr>
</tbody>
</table>
III. Dynamical Systems on Homogeneous Spaces

Contents

Chapter 10. Dynamical Systems on Homogeneous Spaces
(S.G. Dani) ... 266
§ 1. Introduction ... 266
 1.1. Measures on homogeneous spaces 266
 1.2. Examples of lattices 268
 1.3. Ergodicity and its consequences 271
 1.4. Isomorphisms and factors of affine automorphisms 272
§ 2. Affine automorphisms of tori and nilmanifolds 273
 2.1. Ergodic properties; the case of tori 273
 2.2. Ergodic properties on nilmanifolds 275
 2.3. Unipotent affine automorphisms 278
 2.4. Quasi-unipotent affine automorphisms 280
 2.5. Closed invariant sets of automorphisms 281
 2.6. Dynamics of hyperbolic automorphisms 281
 2.7. More on invariant sets of hyperbolic toral automorphisms . 283
 2.8. Distribution of orbits of hyperbolic automorphisms 285
 2.9. Dynamics of ergodic toral automorphisms 286
 2.10. Actions of groups of affine automorphisms 287
§ 3. Group-induced translation flows; special cases 289
 3.1. Flows on solvmanifolds 289
 3.2. Homogeneous spaces of semisimple groups 292
 3.3. Flows on low-dimensional homogeneous spaces 295
§ 4. Ergodic properties of flows on general homogeneous spaces 297
 4.1. Horospherical subgroups and Mautner phenomenon 298
 4.2. Ergodicity of one-parameter flows 300
 4.3. Invariant functions and ergodic decomposition 301
 4.4. Actions of subgroups 303
 4.5. Duality .. 304
 4.6. Spectrum and mixing of group-induced flows 305
4.7. Mixing of higher orders .. 306
4.8. Entropy .. 307
4.9. K-mixing, Bernoullicity .. 308

§ 5. Group-induced flows with hyperbolic structure 309
 5.1. Anosov automorphisms 309
 5.2. Affine automorphisms with a hyperbolic fixed point 311
 5.3. Anosov flows .. 312

§ 6. Invariant measures of group-induced flows 313
 6.1. Invariant measures of Ad-unipotent flows 313
 6.2. Invariant measures and epimorphic subgroups 316
 6.3. Invariant measures of actions of diagonalisable groups . . 318
 6.4. A weak recurrence property and infinite invariant measures 318
 6.5. Distribution of orbits and polynomial trajectories 320
 6.6. A uniform version of uniform distribution 321
 6.7. Distribution of translates of closed orbits 323

§ 7. Orbit closures of group-induced flows 323
 7.1. Homogeneity of orbit closures 323
 7.2. Orbit closures of horospherical subgroups 325
 7.3. Orbits of reductive subgroups 327
 7.4. Orbit closures of one-parameter flows 328
 7.5. Dense orbits and minimal sets of flows 330
 7.6. Divergent trajectories of flows 332
 7.7. Bounded orbits and escapable sets 333

§ 8. Duality and lattice-actions on vector spaces 335
 8.1. Duality between orbits 335
 8.2. Duality of invariant measures 336

§ 9. Applications to Diophantine approximation 338
 9.1. Polynomials in one variable 338
 9.2. Values of linear forms 338
 9.3. Diophantine approximation with dependent quantities . . 339
 9.4. Values of quadratic forms 340
 9.5. Forms of higher degree 343
 9.6. Integral points on algebraic varieties 343

§ 10. Classification and related questions 344
 10.1. Metric isomorphisms and factors 345
 10.2. Metric rigidity 346
 10.3. Topological conjugacy 347
 10.4. Topological equivalence 349

Bibliography .. 350
IV. The Dynamics of Billiard Flows in Rational Polygons

Contents

Chapter 11. The Dynamics of Billiard Flows in Rational Polygons
of Dynamical Systems (J. Smillie) 360
§ 1. Two Examples 362
§ 2. Formal Properties of the Billiard Flow 364
§ 3. The Flow in a Fixed Direction 367
§ 4. Billiard Techniques: Minimality and Closed Orbits 369
§ 5. Billiard Techniques: Unique Ergodicity 372
§ 6. Dynamics on Moduli Spaces 374
§ 7. The Lattice Examples of Veech 377
Bibliography ... 380
V. Dynamical Systems of Statistical Mechanics
and Kinetic Equations

Contents

Chapter 12. Dynamical Systems of Statistical Mechanics
§ 1. Introduction ... 384
§ 2. Phase Space of Systems of Statistical Mechanics
and Gibbs Measures 386
 2.1. The Configuration Space 386
 2.2. Poisson Measures 388
 2.3. The Gibbs Configuration Probability Distribution 388
 2.4. Potential of the Pair Interaction. Existence and Uniqueness
 of a Gibbs Configuration Probability Distribution ... 390
 2.5. The Phase Space. The Gibbs Probability Distribution .. 393
 2.6. Gibbs Measures with a General Potential 395
 2.7. The Moment Measure and Moment Function 396
§ 3. Dynamics of a System of Interacting Particles 398
 3.1. Statement of the Problem 398
 3.2. Construction of the Dynamics and Time Evolution 400
§ 4. Equilibrium Dynamics 403
 4.1. Definition and Construction of Equilibrium Dynamics ... 403
 4.2. The Gibbs Postulate 405
 4.3. Degenerate Models 407
 4.4. Asymptotic Properties of the Measures P_t 408
§ 5. Ideal Gas and Related Systems 408
 5.1. The Poisson Superstructure 408
 5.2. Asymptotic Behaviour of the Probability Distribution P_t
 as $t \to \infty$ 410
 5.3. The Dynamical System of One-Dimensional Hard Rods ... 411
§ 6. Kinetic Equations 412
 6.1. Statement of the Problem 412
 6.2. The Boltzmann Equation 415
 6.3. The Vlasov Equation 419
 6.4. The Landau Equation 420
 6.5. Hydrodynamic Equations 421
Bibliography .. 423
Chapter 13. Existence and Uniqueness Theorems for the Boltzmann Equation (N.B. Maslova) 430

§ 1. Formulation of Boundary Problems. Properties of Integral Operators .. 430
 1.1. The Boltzmann Equation .. 430
 1.2. Formulation of Boundary Problems 434
 1.3. Properties of the Collision Integral 435

§ 2. Linear Stationary Problems .. 437
 2.1. Asymptotics ... 437
 2.2. Internal Problems ... 438
 2.3. External Problems .. 439
 2.4. Kramers’ Problem ... 441

§ 3. Nonlinear Stationary Problems 441

§ 4. Non-Stationary Problems ... 443
 4.1. Relaxation in a Homogeneous Gas 443
 4.2. The Cauchy Problem ... 444
 4.3. Boundary Problems .. 445

§ 5. On a Connection of the Boltzmann Equation with Hydrodynamic Equations ... 446
 5.1. Statement of the Problem ... 446
 5.2. Local Solutions. Reduction to Euler Equations 448
 5.3. A Global Theorem. Reduction to Navier-Stokes Equations 450

Bibliography ... 452