Fourier Analysis, Partial Differential Equations and Variational Methods

Bearbeitet von
Kwong-Tin Tang

ISBN 978 3 540 44695 8
Format (B x L): 15,5 x 23,5 cm
Gewicht: 836 g
Contents

Part I Fourier Analysis

1 Fourier Series .. 3
 1.1 Fourier Series of Functions with Periodicity 2π 3
 1.1.1 Orthogonality of Trigonometric Functions 3
 1.1.2 The Fourier Coefficients 5
 1.1.3 Expansion of Functions in Fourier Series 6
 1.2 Convergence of Fourier Series 9
 1.2.1 Dirichlet Conditions 9
 1.2.2 Fourier Series and Delta Function 10
 1.3 Fourier Series of Functions of any Period 13
 1.3.1 Change of Interval 13
 1.3.2 Fourier Series of Even and Odd Functions 21
 1.4 Fourier Series of Nonperiodic Functions in Limited Range ... 24
 1.5 Complex Fourier Series 29
 1.6 The Method of Jumps .. 32
 1.7 Properties of Fourier Series 37
 1.7.1 Parseval’s Theorem 37
 1.7.2 Sums of Reciprocal Powers of Integers 39
 1.7.3 Integration of Fourier Series 42
 1.7.4 Differentiation of Fourier Series 43
 1.8 Fourier Series and Differential Equations 45
 1.8.1 Differential Equation with Boundary Conditions 45
 1.8.2 Periodically Driven Oscillator 49
 Exercises .. 52

2 Fourier Transforms .. 61
 2.1 Fourier Integral as a Limit of a Fourier Series 61
 2.1.1 Fourier Cosine and Sine Integrals 65
 2.1.2 Fourier Cosine and Sine Transforms 67
 2.2 Tables of Transforms .. 72
2.3 The Fourier Transform 72
2.4 Fourier Transform and Delta Function 79
 2.4.1 Orthogonality 79
 2.4.2 Fourier Transforms Involving Delta Functions 80
 2.4.3 Three-Dimensional Fourier Transform Pair 81
2.5 Some Important Transform Pairs 85
 2.5.1 Rectangular Pulse Function 85
 2.5.2 Gaussian Function 85
 2.5.3 Exponentially Decaying Function 87
2.6 Properties of Fourier Transform 88
 2.6.1 Symmetry Property 88
 2.6.2 Linearity, Shifting, Scaling 89
 2.6.3 Transform of Derivatives 91
 2.6.4 Transform of Integral 92
 2.6.5 Parseval’s Theorem 92
2.7 Convolution ... 94
 2.7.1 Mathematical Operation of Convolution 94
 2.7.2 Convolution Theorems 96
2.8 Fourier Transform and Differential Equations 99
2.9 The Uncertainty of Waves 103
Exercises .. 105

Part II Sturm–Liouville Theory and Special Functions

3 Orthogonal Functions and Sturm–Liouville Problems 111
 3.1 Functions as Vectors in Infinite Dimensional Vector Space 111
 3.1.1 Vector Space 111
 3.1.2 Inner Product and Orthogonality 113
 3.1.3 Orthogonal Functions 116
 3.2 Generalized Fourier Series 121
 3.3 Hermitian Operators 123
 3.3.1 Adjoint and Self-adjoint (Hermitian) Operators 123
 3.3.2 Properties of Hermitian Operators 125
 3.4 Sturm–Liouville Theory 130
 3.4.1 Sturm–Liouville Equations 130
 3.4.2 Boundary Conditions of Sturm–Liouville Problems ... 132
 3.4.3 Regular Sturm–Liouville Problems 133
 3.4.4 Periodic Sturm–Liouville Problems 141
 3.4.5 Singular Sturm–Liouville Problems 142
 3.5 Green’s Function .. 149
 3.5.1 Green’s Function and Inhomogeneous Differential Equation 149
 3.5.2 Green’s Function and Delta Function 150
Exercises .. 157
4 Bessel and Legendre Functions

4.1 Frobenius Method of Differential Equations
4.1.1 Power Series Solution of Differential Equation
4.1.2 Classifying Singular Points
4.1.3 Frobenius Series

4.2 Bessel Functions
4.2.1 Bessel Functions J_\nu(x) of Integer Order
4.2.2 Zeros of the Bessel Functions
4.2.3 Gamma Function
4.2.4 Bessel Function of Noninteger Order
4.2.5 Bessel Function of Negative Order
4.2.6 Neumann Functions and Hankel Functions

4.3 Properties of Bessel Function
4.3.1 Recurrence Relations
4.3.2 Generating Function of Bessel Functions
4.3.3 Integral Representation

4.4 Bessel Functions as Eigenfunctions of Sturm–Liouville

4.5 Other Kinds of Bessel Functions
4.5.1 Modified Bessel Functions
4.5.2 Spherical Bessel Functions

4.6 Legendre Functions
4.6.1 Series Solution of Legendre Equation
4.6.2 Legendre Polynomials
4.6.3 Legendre Functions of the Second Kind

4.7 Properties of Legendre Polynomials
4.7.1 Rodrigues’ Formula
4.7.2 Generating Function of Legendre Polynomials
4.7.3 Recurrence Relations
4.7.4 Orthogonality and Normalization of Legendre Polynomials

4.8 Associated Legendre Functions and Spherical Harmonics
4.8.1 Associated Legendre Polynomials
4.8.2 Orthogonality and Normalization of Associated Legendre Functions
4.8.3 Spherical Harmonics

4.9 Resources on Special Functions

Exercises
Contents

Part III Partial Differential Equations

5 Partial Differential Equations in Cartesian Coordinates

- **5.1 One-Dimensional Wave Equations**
 - 5.1.1 The Governing Equation of a Vibrating String
 - 5.1.2 Separation of Variables
 - 5.1.3 Standing Wave
 - 5.1.4 Traveling Wave
 - 5.1.5 Nonhomogeneous Wave Equations
 - 5.1.6 D’Alembert’s Solution of Wave Equations
- **5.2 Two-Dimensional Wave Equations**
 - 5.2.1 The Governing Equation of a Vibrating Membrane
 - 5.2.2 Vibration of a Rectangular Membrane
- **5.3 Three-Dimensional Wave Equations**
 - 5.3.1 Plane Wave
 - 5.3.2 Particle Wave in a Rectangular Box
- **5.4 Equation of Heat Conduction**
- **5.5 One-Dimensional Diffusion Equations**
 - 5.5.1 Temperature Distributions with Specified Values at the Boundaries
 - 5.5.2 Problems Involving Insulated Boundaries
 - 5.5.3 Heat Exchange at the Boundary
- **5.6 Two-Dimensional Diffusion Equations: Heat Transfer in a Rectangular Plate**
- **5.7 Laplace’s Equations**
 - 5.7.1 Two-Dimensional Laplace’s Equation: Steady-State Temperature in a Rectangular Plate
 - 5.7.2 Three-Dimensional Laplace’s Equation: Steady-State Temperature in a Rectangular Parallelepiped
- **5.8 Helmholtz’s Equations**

6 Partial Differential Equations with Curved Boundaries

- **6.1 The Laplacian**
- **6.2 Two-Dimensional Laplace’s Equations**
 - 6.2.1 Laplace’s Equation in Polar Coordinates
 - 6.2.2 Poisson’s Integral Formula
- **6.3 Two-Dimensional Helmholtz’s Equations in Polar Coordinates**
 - 6.3.1 Vibration of a Drumhead: Two Dimensional Wave Equation in Polar Coordinates
 - 6.3.2 Heat Conduction in a Disk: Two Dimensional Diffusion Equation in Polar Coordinates
 - 6.3.3 Laplace’s Equations in Cylindrical Coordinates
 - 6.3.4 Helmholtz’s Equations in Cylindrical Coordinates
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4</td>
<td>Three-Dimensional Laplacian in Spherical Coordinates</td>
<td>334</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Laplace’s Equations in Spherical Coordinates</td>
<td>334</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Helmholtz’s Equations in Spherical Coordinates</td>
<td>345</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Wave Equations in Spherical Coordinates</td>
<td>346</td>
</tr>
<tr>
<td>6.5</td>
<td>Poisson’s Equations</td>
<td>349</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Poisson’s Equation and Green’s Function</td>
<td>351</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Green’s Function for Boundary Value Problems</td>
<td>355</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>359</td>
</tr>
<tr>
<td></td>
<td>Part IV Variational Methods</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Calculus of Variation</td>
<td>367</td>
</tr>
<tr>
<td>7.1</td>
<td>The Euler–Lagrange Equation</td>
<td>368</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Stationary Value of a Functional</td>
<td>368</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Fundamental Theorem of Variational Calculus</td>
<td>370</td>
</tr>
<tr>
<td>7.1.3</td>
<td>Variational Notation</td>
<td>372</td>
</tr>
<tr>
<td>7.1.4</td>
<td>Special Cases</td>
<td>373</td>
</tr>
<tr>
<td>7.2</td>
<td>Constrained Variation</td>
<td>377</td>
</tr>
<tr>
<td>7.3</td>
<td>Solutions to Some Famous Problems</td>
<td>380</td>
</tr>
<tr>
<td>7.3.1</td>
<td>The Brachistochrone Problem</td>
<td>380</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Isoperimetric Problems</td>
<td>384</td>
</tr>
<tr>
<td>7.3.3</td>
<td>The Catenary</td>
<td>386</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Minimum Surface of Revolution</td>
<td>391</td>
</tr>
<tr>
<td>7.3.5</td>
<td>Fermat’s Principle</td>
<td>394</td>
</tr>
<tr>
<td>7.4</td>
<td>Some Extensions</td>
<td>397</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Functionals with Higher Derivatives</td>
<td>397</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Several Dependent Variables</td>
<td>399</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Several Independent Variables</td>
<td>401</td>
</tr>
<tr>
<td>7.5</td>
<td>Sturm–Liouville Problems and Variational Principles</td>
<td>403</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Variational Formulation of Sturm–Liouville Problems</td>
<td>403</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Variational Calculations of Eigenvalues and Eigenfunctions</td>
<td>405</td>
</tr>
<tr>
<td>7.6</td>
<td>Rayleigh–Ritz Methods for Partial Differential Equations</td>
<td>410</td>
</tr>
<tr>
<td>7.6.1</td>
<td>Laplace’s Equation</td>
<td>411</td>
</tr>
<tr>
<td>7.6.2</td>
<td>Poisson’s Equation</td>
<td>415</td>
</tr>
<tr>
<td>7.6.3</td>
<td>Helmholtz’s Equation</td>
<td>417</td>
</tr>
<tr>
<td>7.7</td>
<td>Hamilton’s Principle</td>
<td>420</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>425</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>431</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>433</td>
</tr>
</tbody>
</table>