Contents

1. Introduction .. 1
 1.1 The Subject of Laser Physics at Relativistic Intensities 1
 1.2 A Review of Basic Studies of Laser Physics at Relativistic Intensities 5
 1.2.1 Nonlinear Propagation and Self-Focusing of Light in Matter .. 5
 1.2.2 Charged Particle Motions in Electromagnetic Fields 6
 1.2.3 Nonlinear Electromagnetic Waves in Plasmas 7
 1.2.4 Scattering of Intense Electromagnetic Radiation in Plasmas 7
 1.2.5 Interactions of Intense, Ultrashort, Laser Pulses with Underdense Plasmas 8
 1.2.6 Interactions of Relativistically Intense Laser Radiation with Overdense Plasmas 11

2. Fundamentals of Cold Plasma Electrodynamics 13
 2.1 Basic Cold Plasma Electrodynamics Equations in Relativistic Notation 13
 2.2 Basic Equations in 3-D Form 16
 2.3 Potential and Vortex Components of Momentum 19
 2.4 Electron Fluid Dynamics with Inertially Frozen Ions 20
 2.4.1 Canonical Variables 21
 2.4.2 Examples of Exact Solutions 22

3. Relativistically Intense Electromagnetic Waves in Plasmas 27
 3.1 The Akhiezer–Polovin Problem 27
 3.2 Linearly Polarized Plane Electromagnetic Waves 29
 3.2.1 Self-Modulation at Relativistic Intensities 29
 3.2.2 Asymptotic Theory in the High-Frequency Limit ... 31
 3.2.3 Quasi-Relativistic Limit 35
 3.3 Circularly Polarized Plane Electromagnetic Waves 37
4. Instabilities of Circularly Polarized Plane Electromagnetic Waves in Plasmas

- 4.1 Equations of Circularly Polarized Wave Instability in Plasmas...
- 4.2 Slab Geometry Instability Equations
 - 4.2.1 Conserved Circular Polarization Approximation...
 - 4.2.2 Instability Growth Rates in Slab Geometry...
- 4.3 3-D Instability Growth Rates
- 4.4 Conclusions...

5. Instabilities of Linearly Polarized Plane Electromagnetic Waves in Plasmas

- 5.1 3-D Instability Equations...
- 5.2 Scattering of Linearly Polarized Electromagnetic Waves in 1-D Geometry...
 - 5.2.1 One-Dimensional Scattering Equations...
 - 5.2.2 Propagation of Perturbations Parallel to the Pump Wave...
- 5.3 Scattering Diagrams for 3-D Instability...
- 5.4 Conclusions...

6. Models of Nonlinear Propagation of Relativistically Intense Ultrashort Laser Pulses in Plasmas

- 6.1 The Physical Model...
- 6.2 Derivation of the Basic Model Equations...
- 6.3Envelope Approximation...
- 6.4 Long Beam and Large Aperture Limits
 - 6.4.1 Long Beam Limit...
 - 6.4.2 Large Laser Pulse Aperture Limit...
- 6.5 Filamentation and Self-Modulation of Relativistically Intense Laser Radiation in Cold Underdense Plasmas...
- 6.6 Laser Radiation Stimulated Scattering by Plasmons and Third-Harmonics Generation...
- 6.7 Conclusions...

7. Intense Laser Pulse Solitons in Plasmas

- 7.1 Soliton Equations and Numerical Solutions...
- 7.2 One-Dimensional Laser Pulse Solitons in the WKB Approximation...
- 7.3 Conclusions...

8. Relativistic and Charge-Displacement Self-Channeling of Intense Ultrashort Laser Pulses in Plasmas

- 8.1 Stationary Self-Localized Modes of Beam Propagation...
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1.1 Slab Geometry Solitons</td>
<td>98</td>
</tr>
<tr>
<td>8.1.2 Axially Symmetrical Eigenmodes: Relativistic and Charge-Displacement Self-Channeling Critical Power</td>
<td>98</td>
</tr>
<tr>
<td>8.2 General Sufficient Condition for Relativistic and Charge-Displacement Self-Channeling</td>
<td>103</td>
</tr>
<tr>
<td>8.3 Propagation of Axially Symmetrical Laser Beams in Cold Underdense Plasmas</td>
<td>104</td>
</tr>
<tr>
<td>8.3.1 Problem Formulation in Terms of Propagation Distance</td>
<td>104</td>
</tr>
<tr>
<td>8.3.2 Relativistic and Charge-Displacement Self-Channeling</td>
<td>106</td>
</tr>
<tr>
<td>8.4 Filamentation Stability of Relativistic and Charge-Displacement Self-Channeling</td>
<td>112</td>
</tr>
<tr>
<td>8.4.1 Eigenmode Stability to Filamentation</td>
<td>114</td>
</tr>
<tr>
<td>8.4.2 Stability of Initially Hyper-Gaussian and Gaussian Beams in Initially Homogeneous Plasmas</td>
<td>115</td>
</tr>
<tr>
<td>8.4.3 Filamentation Stability in Preformed Plasma Columns</td>
<td>122</td>
</tr>
<tr>
<td>8.5 Observation of Relativistic and Charge-Displacement Self-Channeling of Intense Subpicosecond Ultraviolet (248 nm) Radiation in Plasmas</td>
<td>125</td>
</tr>
<tr>
<td>8.6 Conclusions</td>
<td>132</td>
</tr>
<tr>
<td>9. Dynamics of Relativistic and Charge-Displacement Self-Channeling in Time and 2D Space</td>
<td>135</td>
</tr>
<tr>
<td>9.1 Superintense Two-Dimensional Solitons, Self-Modulation, and Spectral Broadening</td>
<td>135</td>
</tr>
<tr>
<td>9.1.1 Laser Beam Stabilization and the Formation of a Two-Dimensional Solitary Wave</td>
<td>135</td>
</tr>
<tr>
<td>9.1.2 Giant Broadening of Laser Pulse Spectra</td>
<td>137</td>
</tr>
<tr>
<td>9.2 Nonlinear Wave Equation Model</td>
<td>139</td>
</tr>
<tr>
<td>9.2.1 A Comparison of Simulations Based on the Modified Nonlinear Schroedinger Equation and on the Nonlinear Wave Equation</td>
<td>141</td>
</tr>
<tr>
<td>9.2.2 Laser Pulse Self-Modulation in a Self-Channeling Regime</td>
<td>145</td>
</tr>
<tr>
<td>9.3 Conclusions</td>
<td>147</td>
</tr>
<tr>
<td>10. Propagation of Laser Radiation in Multiple-Stage Ionized Matter</td>
<td>149</td>
</tr>
<tr>
<td>10.1 General Description of Ionizational Defocusing</td>
<td>150</td>
</tr>
</tbody>
</table>
10.2 Simulations of Ionizational Defocusing of Laser Pulses in Gases 153
10.3 Experimental Demonstration of Ionization-Induced Defocusing of Short-Pulse, High-Power Lasers in Gases 158
10.4 Spectral Blueshifting of Short-Pulse, High-Power Lasers in Gases 160
10.5 Thomas–Fermi Atom in an Intense Field 161

11. Experiments on Laser–Matter Interaction in the Relativistic Regime .. 165
11.1 Enhancement of Self-Channeling Distance by an Exterior Supply of Energy 166
11.2 X-Ray Laser ... 170
11.3 Harmonic Excitation .. 178
11.3.1 High-Order Harmonic Generation in Gases 178
11.3.2 Harmonic Generation in Plasmas 180
11.4 Generation of Intense Electrostatic Fields and Acceleration of Electrons 182
11.5 Generation of Superintense Magnetic Fields 188
11.6 Interaction of Free Electrons with Ultrashort Laser Pulses 190
11.7 Fast Igniter Scheme 192
11.8 Pulse Generator of Neutrons 199

References .. 201

Index .. 217