Contents

1 A Brief Introduction to Zero-Knowledge (by O.G.)

1.1 Preliminaries 3
 1.1.1 Interactive Proofs and Argument Systems 4
 1.1.2 Computational Difficulty and One-Way Functions 6
 1.1.3 Computational Indistinguishability 7

1.2 Definitional Issues 8
 1.2.1 The Simulation Paradigm 9
 1.2.2 The Basic Definition 10
 1.2.3 Variants 11

1.3 Zero-Knowledge Proofs for Every NP-set 15
 1.3.1 Constructing Zero-Knowledge Proofs for NP-sets 15
 1.3.2 Using Zero-Knowledge Proofs for NP-sets 17

1.4 Composing Zero-Knowledge Protocols 18
 1.4.1 Sequential Composition 19
 1.4.2 Parallel Composition 20
 1.4.3 Concurrent Composition (With and Without Timing) 22

2 Introduction to Concurrent Zero-Knowledge

2.1 Zero-Knowledge Proof Systems 26
 2.1.1 Concurrent Composition of ZK 26
 2.1.2 On the Feasibility of cZK 27
 2.1.3 The Round-Complexity of cZK 27

2.2 From Repetition to Composition 28
 2.2.1 A “Typical” ZK Protocol for NP 29
 2.2.2 Composition of ZK Protocols 32

2.3 A Second Look at the Feasibility of cZK 33
 2.3.1 A Troublesome Scheduling 33
 2.3.2 The Richardson–Kilian Protocol and Its Analysis 35
 2.3.3 Improving the Analysis of the RK Protocol 36
 2.3.4 What About Non-Black-Box Simulation? 36

2.4 Organization and the Rest of This Book 37
3 Preliminaries

- **General**
 - **Basic Notation**
 - **Probabilistic Notation**
 - **Computational Indistinguishability**
- **Interactive Proofs**
- **Zero-Knowledge**
- **Witness Indistinguishability**
- **Concurrent Zero-Knowledge**
- **Black-Box Concurrent Zero-Knowledge**
- **Conventions Used in Construction of Simulators**
- **Commitment Schemes**

4 cZK Proof Systems for NP

- **Blum’s Hamiltonicity Protocol**
- **The Richardson–Kilian cZK Protocol**
- **The Prabhakaran–Rosen–Sahai cZK Protocol**
- **Simulating the RK and PRS Protocols – Outline**
- **Analyzing the Simulation – Outline**
 - **The Simulator Runs in Polynomial Time**
 - **The Simulator’s Output is “Correctly” Distributed**
 - **The Simulator (Almost) Never Gets “Stuck”**

5 cZK in Logarithmically Many Rounds

- **Detailed Description of the Simulator**
 - **The Main Procedure and Ideas**
 - **The Actual Simulator**
- **The Simulator’s Running Time**
- **The Simulator’s Output Distribution**
- **The Probability of Getting “Stuck”**
 - **Counting Bad Random Tapes**
 - **Special Intervals Are Visited Many Times**
- **Extensions**
 - **Applicability to Other Protocols**
 - **cZK Arguments Based on Any One-Way Function**
 - **Applicability to Resettable Zero-Knowledge**
 - **cZK Arguments with Poly-Logarithmic Efficiency**

6 A Simple Lower Bound

- **Proof of Theorem 6.1**
 - **Schedule, Adversary Verifiers and Decision Procedure**
 - **Proof of Lemma 6.1.5**
 - **Existence of Useful Initiation Prefixes**
 - **The Structure of Good Subtrees**
7 Black-Box \(cZK \) Requires Logarithmically Many Rounds . . . 111
 7.1 Proof Outline .. 112
 7.1.1 The High-Level Framework 112
 7.1.2 The Schedule and Additional Ideas 114
 7.1.3 The Actual Analysis 119
 7.2 The Actual Proof .. 119
 7.2.1 The Concurrent Adversarial Verifier 119
 7.2.2 The Actual Verifier Strategy \(V_{g,h} \) 126
 7.2.3 The Decision Procedure for \(L \) 130
 7.3 Performance on \(\text{no} \)-instances 132
 7.3.1 The Cheating Prover 133
 7.3.2 The Success Probability of the Cheating Prover 137
 7.3.3 Legal Transcripts Yield Useful Block Prefixes 142
 7.3.4 Existence of Potentially Useful Block Prefixes 144
 7.3.5 Existence of Useful Block Prefixes 152
8 Conclusions and Open Problems 161
 8.1 Avoiding the Lower Bounds of Chapter 7 161
 8.2 Open Problems ... 162
9 A Brief Account of Other Developments (by O.G.) 165
 9.1 Using the Adversary’s Program in the Proof of Security 167
 9.2 Witness Indistinguishability and the FLS-Technique 169
 9.3 Proofs of Knowledge .. 171
 9.3.1 How to Define Proofs of Knowledge 171
 9.3.2 How to Construct Proofs of Knowledge 172
 9.4 Non-interactive Zero-Knowledge 173
 9.5 Statistical Zero-Knowledge 174
 9.5.1 Transformations 175
 9.5.2 Complete Problems and Structural Properties 176
 9.6 Resettability of a Party’s Random-Tape (\(rZK \) and \(rsZK \)) 176
 9.7 Zero-Knowledge in Other Models 177

References .. 179