Contents

-1 Notation and Convention 1
0 Preliminaries .. 3
 0.1 Doob’s Maximal Identity 3
 0.2 Balayage Formula 4
 0.3 Predictable Compensators 6
 0.4 σ-fields Associated with a Random Time Λ 6
 0.5 Integration by Parts Formulae 7
 0.6 H^1 and BMO Spaces 7
 0.7 Exercises ... 8
1 Enlargements of Filtrations 11
 1.1 Some General Problems of Enlargements 11
 1.2 Progressive Enlargement 12
 1.2.1 Decomposition Formula 13
 1.2.2 Pitman’s Theorem on $2S-B$ and Some Generalizations via Some Progressive Enlargement of Filtration 17
 1.3 Initial Enlargement 18
 1.4 Further References 22
 1.5 Exercises ... 22
A Appendix: Some Enlargements Formulae 31
 Tables 1α and 1β: Progressive Enlargements 32
 Tables 2α and 2β: Initial Enlargements 34
 Comments on the Tables 36
2 Stopping and Non-stopping Times 41
 2.1 Stopping Times and Doob’s Optional Theorem 41
 2.1.1 The Knight-Maisonneuve Characterization of Stopping Times .. 41
 2.1.2 D. Williams’ Example of a Pseudo-stopping Time 42
2.1.3 A Characterization of Pseudo-stopping Times 43
2.2 How Badly are the BDG Inequalities Affected
by a General Random Time? 44
 2.2.1 A Global Approach (Common to all \(A\)'s) 45
 2.2.2 An “Individual” Approach (Depending on \(A\)) 46
2.3 Local Time Estimates .. 47
2.4 Further References ... 49
2.5 Exercises ... 49

3 On the Martingales which Vanish on the Set
of Brownian Zeroes ... 53
 3.1 Some Quantities Associated with \(\gamma\) 53
 3.1.1 Azéma Supermartingale
 and the Predictable Compensator Associated with \(\gamma\) ... 54
 3.1.2 Path Decomposition Relative to \(\gamma\) 55
 3.1.3 Brownian Meander ... 55
 3.2 Some Examples of Martingales which Vanish
on \(Z = \{t; B_t = 0\}\) ... 57
 3.3 Some Brownian Martingales with a Given Local Time,
or Supremum Process ... 59
 3.4 A Remarkable Coincidence between \(E[X|F_{\gamma}]\) and \(X_{\gamma}\) 60
 3.5 Resolution of Some Conditional Equations 62
 3.6 Understanding how \(E[X|F_{\gamma}]\) and \(X_{\gamma}\) Differ 64
 3.7 Exercises ... 66

4 PRP and CRP for Some Remarkable Martingales 71
 4.1 Definition and First Example 71
 4.2 PRP and Extremal Martingale Distributions 74
 4.3 CRP: An Attempt Towards a General Discussion 75
 4.3.1 An Attempt to Understand the CRP in Terms
 of a Generalized Moments Problem 76
 4.3.2 Some Sufficient Conditions for the CRP 77
 4.3.3 The Case of the Azéma Martingale 79
 4.4 Exercises ... 83

5 Unveiling the Brownian Path (or history) as the Level Rises
 5.1 Above and Under a Given Level 88
 5.1.1 First Computations in Williams’ Framework 88
 5.1.2 First Computations in Azéma-Hu’s Framework 90
 5.2 Rogers-Walsh Theorem about Williams’ Filtration 93
 5.2.1 Some Space Martingales which are Constant
 up to a Fixed Level 93
 5.2.2 A Dense Family of Continuous Martingales 94
 5.3 A Discussion Relative to (\(\mathcal{E}^a_{\gamma}, a \in \mathbb{R}\)) 95
 5.3.1 Hu’s Result about (\(\mathcal{E}^a_{\gamma}, a \in \mathbb{R}\))-Martingales 95
5.3.2 Some Markov Processes with Respect to $(\mathcal{F}_t^a, a \in \mathbb{R})$... 97
5.4 Some Subfiltrations of the Brownian Filtration 99
5.5 Exercises ... 101

6 Weak and Strong Brownian Filtrations 103
 6.1 Definitions ... 104
 6.2 Examples of Weak Brownian Filtrations 105
 6.2.1 Change of Probability 106
 6.2.2 Change of Time 108
 6.2.3 Walsh’s Brownian Motion and Spider Martingales 109
 6.3 Invariants of a Filtration 112
 6.4 Further References 114
 6.5 Exercises ... 114

7 Sketches of Solutions for the Exercises 117

References .. 141

Index .. 157