Invariant Manifolds for Physical and Chemical Kinetics

Bearbeitet von
Alexander N Gorban, Iliya V Karlin

ISBN 978 3 540 22684 0
Format (B x L): 15,5 x 23,5 cm
Gewicht: 1990 g

Weitere Fachgebiete > Technik > Technik Allgemein > Physik, Chemie für Ingenieure

schnell und portofrei erhältlich bei

beck-shop.de
DIE FACHBUCHHANDLUNG

Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte.
Contents

1 Introduction .. 1
 1.1 Ideas and References 1
 1.2 Content and Reading Approaches 11

2 The Source of Examples 21
 2.1 The Boltzmann Equation 21
 2.1.1 The Equation 21
 2.1.2 The Basic Properties of the Boltzmann Equation . 23
 2.1.3 Linearized Collision Integral 25
 2.2 Phenomenology and Quasi-Chemical Representation
 of the Boltzmann Equation 26
 2.3 Kinetic Models 27
 2.4 Methods of Reduced Description 28
 2.4.1 The Hilbert Method 29
 2.4.2 The Chapman–Enskog Method 30
 2.4.3 The Grad Moment Method 32
 2.4.4 Special Approximations 33
 2.4.5 The Method of Invariant Manifold 33
 2.4.6 Quasiequilibrium Approximations 35
 2.5 Discrete Velocity Models 36
 2.6 Direct Simulation 36
 2.7 Lattice Gas and Lattice Boltzmann Models 37
 2.7.1 Discrete Velocity Models for Hydrodynamics 37
 2.7.2 Entropic Lattice Boltzmann Method 42
 2.7.3 Entropic Lattice BGK Method (ELBGK) 42
 2.7.4 Boundary Conditions 46
 2.7.5 Numerical Illustrations of the ELBGK 46
 2.8 Other Kinetic Equations 46
 2.8.1 The Enskog Equation for Hard Spheres 46
 2.8.2 The Vlasov Equation 48
 2.8.3 The Fokker–Planck Equation 49
 2.9 Equations of Chemical Kinetics
 and Their Reduction 50
 2.9.1 Dissipative Reaction Kinetics 50
2.9.2 The Problem of Reduced Description in Chemical Kinetics 55
2.9.3 Partial Equilibrium Approximations .. 55
2.9.4 Model Equations ... 57
2.9.5 Quasi-Steady State Approximation .. 59
2.9.6 Thermodynamic Criteria for the Selection of Important Reactions 61
2.9.7 Opening ... 62

3 Invariance Equation in Differential Form .. 65

4 Film Extension of the Dynamics: Slowness as Stability 69
 4.1 Equation for the Film Motion ... 69
 4.2 Stability of Analytical Solutions ... 71

5 Entropy, Quasiequilibrium, and Projectors Field 79
 5.1 Moment Parameterization .. 79
 5.2 Entropy and Quasiequilibrium .. 80
 5.3 Thermodynamic Projector without a Priori Parameterization 85
 5.4 Uniqueness of Thermodynamic Projector 87
 5.4.1 Projection of Linear Vector Field 87
 5.4.2 The Uniqueness Theorem .. 88
 5.4.3 Orthogonality of the Thermodynamic Projector and Entropic Gradient Models .. 90
 5.4.4 Violation of the Transversality Condition, Singularity of Thermodynamic Projection, and Steps of Relaxation 92
 5.4.5 Thermodynamic Quasiequilibrium Projector, Quasiequilibrium, and Entropy Maximum .. 93
 5.5 Example: Quasiequilibrium Projector and Defect of Invariance for the Local Maxwellians Manifold of the Boltzmann Equation 97
 5.5.1 Difficulties of Classical Methods of the Boltzmann Equation Theory ... 98
 5.5.2 Boltzmann Equation .. 99
 5.5.3 Local Manifolds ... 100
 5.5.4 Thermodynamic Quasiequilibrium Projector 101
 5.5.5 Defect of Invariance for the LM Manifold 102
 5.6 Example: Quasiequilibrium Closure Hierarchies for the Boltzmann Equation ... 103
 5.6.1 Triangle Entropy Method .. 103
 5.6.2 Linear Macroscopic Variables .. 106
5.6.3 Transport Equations for Scattering Rates
in the Neighbourhood of Local Equilibrium.
Second and Mixed Hydrodynamic Chains 113
5.6.4 Distribution Functions
of the Second Quasiequilibrium Approximation
for Scattering Rates 116
5.6.5 Closure of the Second and Mixed Hydrodynamic Chains123
5.6.6 Appendix:
Formulas of the Second Quasiequilibrium
Approximation of the Second
and Mixed Hydrodynamic Chains
for Maxwell Molecules and Hard Spheres 126
5.7 Example: Alternative Grad Equations
and a “New Determination of Molecular Dimensions”
(Revisited) .. 131
5.7.1 Nonlinear Functionals Instead of Moments
in the Closure Problem................................. 132
5.7.2 Linearization 133
5.7.3 Truncating the Chain 134
5.7.4 Entropy Maximization 134
5.7.5 A New Determination of Molecular Dimensions
(Revisited) ... 136

6 Newton Method
with Incomplete Linearization 139
6.1 The Method .. 139
6.2 Example: Two-Step Catalytic Reaction 141
6.3 Example: Non-Perturbative Correction
of Local Maxwellian Manifold
and Derivation of Nonlinear Hydrodynamics
from Boltzmann Equation (1D) 144
6.3.1 Positivity and Normalization 144
6.3.2 Galilean Invariance of Invariance Equation 145
6.3.3 Equation of the First Iteration 146
6.3.4 Parametrix Expansion 149
6.3.5 Finite-Dimensional Approximations
to Integral Equations 154
6.3.6 Hydrodynamic Equations 159
6.3.7 Nonlocality .. 160
6.3.8 Acoustic Spectra 160
6.3.9 Nonlinearity 161
6.4 Example: Non-Perturbative Derivation
of Linear Hydrodynamics
from the Boltzmann Equation (3D) 163
6.5 Example: Dynamic Correction to Moment Approximations 170
6.5.1 Dynamic Correction or Extension of the List of Variables? 170
6.5.2 Invariance Equation for Thirteen-Moment Parameterization 171
6.5.3 Solution of the Invariance Equation ... 174
6.5.4 Corrected Thirteen-Moment Equations .. 175
6.5.5 Discussion: Transport Coefficients, Destroying the Hyperbolicity, etc. 177

7 Quasi-Chemical Representation ... 179
7.1 Decomposition of Motions, Non-Uniqueness of Selection of Fast Motions, Self-Adjoint Linearization, Onsager Filter, and Quasi-Chemical Representation 179
7.2 Example: Quasi-Chemical Representation and Self-Adjoint Linearization of the Boltzmann Collision Operator .. 183

8 Hydrodynamics From Grad’s Equations: What Can We Learn From Exact Solutions? ... 189
8.1 The “Ultra-Violet Catastrophe” of the Chapman-Enskog Expansion 189
8.2 The Chapman–Enskog Method for Linearized Grad’s Equations 192
8.3 Exact Summation of the Chapman–Enskog Expansion ... 195
8.3.1 The 1D10M Grad Equations ... 195
8.3.2 The 3D10M Grad Equations ... 202
8.4 The Dynamic Invariance Principle ... 212
8.4.1 Partial Summation of the Chapman–Enskog Expansion 212
8.4.2 The Dynamic Invariance ... 215
8.4.3 The Newton Method ... 217
8.4.4 Invariance Equation for the 1D13M Grad System 223
8.4.5 Invariance Equation for the 3D13M Grad System 228
8.4.6 Gradient Expansions in Kinetic Theory of Phonons 230
8.4.7 Nonlinear Grad Equations ... 239
8.5 The Main Lesson ... 246

9 Relaxation Methods ... 247
9.1 “Large Stepping” for the Equation of the Film Motion .. 247
9.2 Example: Relaxation Method for the Fokker-Planck Equation 248
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2.1</td>
<td>Quasi-Equilibrium Approximations for the Fokker-Planck Equation</td>
<td>248</td>
</tr>
<tr>
<td>9.2.2</td>
<td>The Invariance Equation for the Fokker-Planck Equation</td>
<td>251</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Diagonal Approximation</td>
<td>252</td>
</tr>
<tr>
<td>9.3</td>
<td>Example: Relaxational Trajectories:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Global Approximations</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td>9.3.1 Initial Layer and Large Stepping</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td>9.3.2 Extremal Properties of the Limiting State</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>9.3.3 Approximate Trajectories</td>
<td>259</td>
</tr>
<tr>
<td></td>
<td>9.3.4 Relaxation of the Boltzmann Gas</td>
<td>262</td>
</tr>
<tr>
<td></td>
<td>9.3.5 Estimations</td>
<td>268</td>
</tr>
<tr>
<td></td>
<td>9.3.6 Discussion</td>
<td>276</td>
</tr>
<tr>
<td>10</td>
<td>Method of Invariant Grids</td>
<td>279</td>
</tr>
<tr>
<td>10.1</td>
<td>Invariant Grids</td>
<td>279</td>
</tr>
<tr>
<td>10.2</td>
<td>Grid Construction Strategy</td>
<td>282</td>
</tr>
<tr>
<td></td>
<td>10.2.1 Growing Lump</td>
<td>282</td>
</tr>
<tr>
<td></td>
<td>10.2.2 Invariant Flag</td>
<td>282</td>
</tr>
<tr>
<td></td>
<td>10.2.3 Boundaries Check and the Entropy</td>
<td>283</td>
</tr>
<tr>
<td>10.3</td>
<td>Instability of Fine Grids</td>
<td>283</td>
</tr>
<tr>
<td>10.4</td>
<td>Which Space is Most Appropriate for the Grid Construction?</td>
<td>284</td>
</tr>
<tr>
<td>10.5</td>
<td>Carleman's Formula</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in the Analytical Invariant Manifolds Approximations.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>First Benefit of Analyticity: Superresolution</td>
<td>285</td>
</tr>
<tr>
<td>10.6</td>
<td>Example: Two-Step Catalytic Reaction</td>
<td>287</td>
</tr>
<tr>
<td>10.7</td>
<td>Example: Model Hydrogen Burning Reaction</td>
<td>291</td>
</tr>
<tr>
<td>10.8</td>
<td>Invariant Grid as a Tool for Data Visualization</td>
<td>295</td>
</tr>
<tr>
<td>11</td>
<td>Method of Natural Projector</td>
<td>299</td>
</tr>
<tr>
<td>11.1</td>
<td>Ehrenfests' Coarse-Graining Extended to a Formalism of Nonequilibrium Thermodynamics</td>
<td>299</td>
</tr>
<tr>
<td>11.2</td>
<td>Example: From Reversible Dynamics to Navier–Stokes and Post-Navier–Stokes Hydrodynamics by Natural Projector</td>
<td>301</td>
</tr>
<tr>
<td></td>
<td>11.2.1 General Construction</td>
<td>303</td>
</tr>
<tr>
<td></td>
<td>11.2.2 Enhancement of Quasiequilibrium Approximations for Entropy-Conserving Dynamics</td>
<td>304</td>
</tr>
<tr>
<td></td>
<td>11.2.3 Entropy Production</td>
<td>307</td>
</tr>
<tr>
<td></td>
<td>11.2.4 Relation to the Work of Lewis</td>
<td>308</td>
</tr>
<tr>
<td></td>
<td>11.2.5 Equations of Hydrodynamics</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td>11.2.6 Derivation of the Navier–Stokes Equations</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td>11.2.7 Post-Navier–Stokes Equations</td>
<td>313</td>
</tr>
</tbody>
</table>
11.3 Example: Natural Projector
for the McKean Model 316
11.3.1 General Scheme 316
11.3.2 Natural Projector for Linear Systems 318
11.3.3 Explicit Example of the Fluctuation-Dissipation
Formula .. 319
11.3.4 Comparison with the Chapman-Enskog Method
and Solution of the Invariance Equation 321

12 Geometry of Irreversibility:
The Film of Nonequilibrium States 325
12.1 The Thesis About Macroscopically Definable Ensembles
and the Hypothesis About
Primitive Macroscopically Definable Ensembles .. 325
12.2 The Problem of Irreversibility 328
12.2.1 The Phenomenon of the Macroscopic Irreversibility .. 328
12.2.2 Phase Volume and Dynamics of Ensembles 329
12.2.3 Macroscopically Definable Ensembles
and Quasiequilibria 331
12.2.4 Irreversibility and Initial Conditions 334
12.2.5 Weak and Strong Tendency to Equilibrium,
Shaking and Short Memory 335
12.2.6 Subjective Time and Irreversibility 336
12.3 Geometrization of Irreversibility 336
12.3.1 Quasiequilibrium Manifold 336
12.3.2 Quasiequilibrium Approximation 339
12.4 Natural Projector
and Models of Nonequilibrium Dynamics 341
12.4.1 Natural Projector 341
12.4.2 One-Dimensional Model of Nonequilibrium States .. 343
12.4.3 Curvature and Entropy Production:
Entropic Circle and First Kinetic Equations 346
12.5 The Film of Non-Equilibrium States 348
12.5.1 Equations for the Film 348
12.5.2 Thermodynamic Projector on the Film 349
12.5.3 Fixed Points of the Film Equation 352
12.5.4 The Failure of the Simplest
Galerkin-Type Approximations
for Conservative Systems 353
12.5.5 Second Order Kepler Models of the Film 355
12.5.6 The Finite Models: Termination at the Horizon Points 356
12.5.7 The Transversal Restart Lemma 359
12.5.8 The Time Replacement, and the Invariance
of the Projector 360
12.5.9 Correction to the Infinite Models 360
13 Slow Invariant Manifolds for Open Systems......................... 367
13.1 Slow Invariant Manifold for a Closed System
Has Been Found. What Next?................................. 367
13.2 Slow Dynamics in Open Systems.
Zero-Order Approximation
and the Thermodynamic Projector 368
13.3 Slow Dynamics in Open Systems.
First-Order Approximation 371
13.4 Beyond the First-Order Approximation: Higher-Order
Dynamic Corrections, Stability Loss
and Invariant Manifold Explosion.......................... 373
13.5 Example: The Universal Limit in Dynamics
of Dilute Polymeric Solutions 375
 13.5.1 The Problem of Reduced Description
 in Polymer Dynamics 377
 13.5.2 The Method of Invariant Manifold
 for Weakly Driven Systems 382
 13.5.3 Linear Zero-Order Equations 387
 13.5.4 Auxiliary Formulas. 1. Approximations
to Eigenfunctions of the Fokker–Planck Operator 388
 13.5.5 Auxiliary Formulas. 2. Integral Relations 390
 13.5.6 Microscopic Derivation of Constitutive Equations .. 391
 13.5.7 Tests on the FENE Dumbbell Model 397
 13.5.8 The Main Results of this Example are as Follows: .. 401
13.6 Example: Explosion of Invariant Manifold,
Limits of Macroscopic Description
for Polymer Molecules, Molecular Individualism,
and Multimodal Distributions 403
 13.6.1 Dumbbell Models and the Problem
 of the Classical Gaussian Solution Stability 403
 13.6.2 Dynamics of the Moments
 and Explosion of the Gaussian Manifold 405
 13.6.3 Two-Peak Approximation for Polymer Stretching
 in Flow and Explosion of the Gaussian Manifold .. 407
 13.6.4 Polymodal Polyhedron and Molecular Individualism 411

14 Dimension of Attractors Estimation 419
14.1 Lyapunov Norms, Finite-Dimensional Asymptotics
 and Volume Contraction 419
14.2 Examples: Lyapunov Norms for Reaction Kinetics 423
14.3 Examples: Infinite-Dimensional Systems
With Finite-Dimensional Attractors

14.4 Systems with Inheritance:
Dynamics of Distributions with Conservation
of Support, Natural Selection
and Finite-Dimensional Asymptotics

14.4.1 Introduction: Unusual Conservation Law

14.4.2 Optimality Principle for Limit Diversity

14.4.3 How Many Points
Does the Limit Distribution Support Hold?

14.4.4 Selection Efficiency

14.4.5 Gromov’s Interpretation of Selection Theorems

14.4.6 Drift Equations

14.4.7 Three Main Types of Stability

14.4.8 Main Results About Systems with Inheritance

14.5 Example: Cell Division Self-Synchronization

15 Accuracy Estimation and Post-Processing
in Invariant Manifolds Construction

15.1 Formulas for Dynamic and Static Post-Processing

15.2 Example: Defect of Invariance Estimation
and Switching from the Microscopic Simulations
to Macroscopic Equations

15.2.1 Invariance Principle and Micro-Macro Computations

15.2.2 Application to Dynamics of Dilute Polymer Solution

16 Conclusion

References

Mathematical Notation and Some Terminology

Index