Discrete, Continuous, and Hybrid Petri Nets

Bearbeitet von
René David, Hassane Alla

ISBN 978 3 540 22480 8
Format (B x L): 15,5 x 23,5 cm
Gewicht: 2080 g
Contents

Foreword by Manuel Silva V

Preface IX

Contents XIII

Notation XIX

1 Bases of Petri Nets 1

1.1 BASIC CONCEPTS 1

1.1.1 Places, Transitions, and Arcs 1

1.1.2 Marking 2

1.1.3 Firing of a Transition 3

1.1.4 Autonomous and Non-Autonomous Petri Nets 4

1.1.5 The Essential Characteristics 5

1.2 SPECIAL PETRI NETS 5

1.2.1 Particular Structures 6

1.2.1.1 State Graph 7

1.2.1.2 Event Graph 7

1.2.1.3 Conflict Free Petri Net 8

1.2.1.4 Free Choice Petri Net 8

1.2.1.5 Simple Petri Net 8

1.2.1.6 Pure Petri Net 9

1.2.2 Abbreviations and Extensions 9

1.2.2.1 Generalized Petri Nets 9

1.2.2.2 Finite Capacity Petri Nets 11

1.2.2.3 Colored Petri Nets 12

1.2.2.4 Extended Petri Nets 13

1.2.2.5 Priority Petri Nets 15

1.2.2.6 Non-Autonomous Petri Nets 16

1.2.2.7 Continuous and Hybrid Petri Nets 17

1.2.2.8 Conclusion 17

1.3 MODELING OF SOME CONCEPTS 17

NOTES and REFERENCES 20
2 Properties of Petri Nets

2.1 PRESENTATION OF THE MAIN PROPERTIES

2.1.1 Notations and Definitions
2.1.2 Bounded Petri Net, Safe Petri Net
2.1.3 Liveness and Deadlock
2.1.4 Conflicts
2.1.5 Invariants
2.1.5.1 Conservative Component
2.1.5.2 Repetitive Component

2.2 SEEKING THE PROPERTIES OF PETRI NETS

2.2.1 Graph of Markings and Coverability Root Tree
2.2.1.1 Graph of Markings
2.2.1.2 Coverability Root Tree
2.2.2 Linear Algebra
2.2.2.1 Notations and Definitions
2.2.2.2 Fundamental Equation
2.2.2.3 Conservative Components & Marking Invariants
2.2.2.4 Repetitive Components & Firing Invariants
2.2.2.5 Seeking P-invariants and T-invariants

2.2.3 Reduction Methods Preserving Some Properties

2.2.4 Other Results
2.2.4.1 Strongly Connected Event Graphs
2.2.4.2 Siphons and Traps
2.2.4.3 Liveness Related to Other Properties

2.2.5 Concluding Remarks
2.2.5.1 Structuring
2.2.5.2 Analysis Software

NOTES and REFERENCES
3.4 TIMED PETRI NETS 93
 3.4.1 General Information 93
 3.4.2 Constant Timing 96
 3.4.2.1 P-Timed Petri Nets 96
 3.4.2.2 T-Timed Petri Nets 98
 3.4.2.3 Stationary Behavior 101
 3.4.3 Stochastic Petri Nets 103
 3.4.3.1 Basic Model 103
 3.4.3.2 Generalized Stochastic Petri Net 105
 3.4.3.3 Analysis and Simulation of Stochastic PNs 106

NOTES and REFERENCES 108

4 Autonomous Continuous and Hybrid Petri Nets 111

4.1 AUTONOMOUS CONTINUOUS PETRI NETS 111
 4.1.1 From Discrete Petri Net To Continuous Petri Net 111
 4.1.2 Definition 114
 4.1.3 Reachability and Conflicts 116
 4.1.3.1 Reachability Graph 116
 4.1.3.2 Firing Sequence and Reachability Space 119
 4.1.3.3 Conflicts 121

4.2 AUTONOMOUS HYBRID PETRI NETS 122
 4.2.1 Intuitive presentation 122
 4.2.2 Definition 124
 4.2.3 Reachability and conflicts 126
 4.2.3.1 Reachability Graph 127
 4.2.3.2 Firing Sequence and Reachability Space 130
 4.2.3.3 Conflicts 132

4.3 PROPERTIES OF AUTONOMOUS CONTINUOUS AND HYBRID PETRI NETS 133
 4.3.1 Definitions and Properties Similar for Discrete and Continuous Petri Nets 133
 4.3.1.1 Definitions 133
 4.3.1.2 Properties 134
 4.3.2 Reachability and Limit Reachability for a Continuous Petri Net 135
 4.3.3 ε-Liveness for a Continuous Petri Net 138
 4.3.4 Lim-Liveness for a Continuous Petri Net 139
 4.3.5 Properties for a Hybrid Petri Net 141
 4.3.5.1 Similar Definitions and Properties 141
 4.3.5.2 Reachability and Liveness 141
 4.3.5.3 Incidence Matrix 142
5 Timed Continuous Petri Nets 149

5.1 DEFINITION OF THE MODEL 149

5.1.1 Limit Case of a Discrete Timed Petri Net 150

5.1.2 Analysis of Some Basic Behaviors 151

5.1.2.1 Sequences of Transitions, Same Maximal Speeds 152

5.1.2.2 Sequences of Transitions, Different Maximal Speeds 156

5.1.2.3 Synchronization 159

5.1.2.4 Timed Continuous Petri Net With a Circuit 160

5.1.2.5 Infinite Maximal Speed 161

5.1.3 Definitions 163

5.1.3.1 Definition and Notation 164

5.1.3.2 Enabling 164

5.1.3.3 Balance 167

5.1.3.4 Evolution Graph 169

5.2 CONFLICTS 170

5.2.1 Existence of an Actual Conflict 170

5.2.2 Conflict Resolution 171

5.3 SPEED CALCULATION ALGORITHMS 173

5.3.1 There is No Structural Conflict 174

5.3.2 Resolution By Priorities 176

5.3.2.1 Expected Results And Problems To Be Solved 176

5.3.2.2 Setting Up the Set of Surely Firable Transitions 180

5.3.2.3 Algorithm And Application 185

5.3.3 Resolution By Sharings And Priorities 189

5.3.3.1 Single Sharing Between Two Transitions 189

5.3.3.2 One or Several Sharings Among Transitions 191

5.3.3.3 Algorithm 197

5.3.4 Complete Algorithm For All IB-states 202

5.4 PROPERTIES 205

5.4.1 Illustrative Examples 205

5.4.1.1 A Simple Production System 205

5.4.1.2 About Marking 0" 207

5.4.2 General Properties 208

5.4.3 Modeling Power 212

5.5 MAXIMAL SPEEDS FUNCTIONS OF TIME 214

NOTES and REFERENCES 216
6 Timed Hybrid Petri Nets 219

6.1 DEFINITION OF THE MODEL 219
6.1.1 Intuitive Presentation 220
6.1.2 Events To Be Considered 221
6.1.3 Conflict Resolutions 223
6.1.4 Flow Rate and Maximal Firing Speed 226
6.1.5 Formal Definitions 228
6.1.5.1 Definition and Notations 228
6.1.5.2 Enabling in Timed Hybrid Petri Nets 230
6.1.5.3 Evolution Graph 232

6.2 ALGORITHM 235
6.2.1 Resolution for a Case 4 Conflict 236
6.2.1.1 Resolution by Priority 236
6.2.1.2 Resolution by Sharing 238
6.2.1.3 Algorithmic Resolution 240
6.2.2 Consequences of Various Events 241
6.2.3 Timed Hybrid PNs Automatically Treated in Algorithm 6.1 243
6.2.3.1 Hybrid PN Restricted to a Continuous PN 243
6.2.3.2 Consistency of Resolution Rules 245
6.2.4 Algorithm for Building the Evolution Graph 249
6.2.5 Resolution of a Case Not Treated by Algorithm 6.1 254

6.3 VARIANTS OF THE MODEL 255
6.3.1 Synchronized D-Transitions 255
6.3.2 Stochastic Timings for D-Transitions 258
6.3.3 C-Transitions with Flow Rates Functions of Time 259

6.4 EXTENDED TIMED HYBRID PETRI NETS 261
6.4.1 Modeling of Zero Buffers 262
6.4.2 Arc Weight 0+ for Testing if a C-Place is Empty 265
6.4.3 Pure Delay of a Continuous Flow 268
6.4.3.1 Simple Conveyor 268
6.4.3.2 Various Behaviors of a Conveyor 272
6.4.3.3 Fluid Example 274
6.4.4 Conclusion on Timed Extended Hybrid Petri Nets 275

NOTES and REFERENCES 276

7 Hybrid Petri Nets with Speeds Depending on the C-Marking 279

7.1 APPROXIMATION OF TIMED DISCRETE SYSTEMS BY VHPNs 279
7.1.1 Weakness of Basic Timed Hybrid PNs for Small Numbers 280
7.1.2 Simple Cases of Variable Speed Hybrid PN 281
7.1.3 General Case of VHPN 285
7.1.3.1 Conflicts 285
7.1.3.2 Definition of the Model 287
7.1.3.3 Properties 293