Coupled Models for the Hydrological Cycle

Integrating Atmosphere, Biosphere and Pedosphere

Bearbeitet von
Axel Bronstert, Jesus Carrera, Pavel Kabat, Sabine Lütkemeier

ISBN 978 3 540 22371 9
Format (B x L): 15,5 x 23,5 cm
Gewicht: 1530 g

Weitere Fachgebiete > Geologie, Geographie, Klima, Umwelt > Geologie > Hydrologie, Hydrogeologie
Zu Leseprobe

schnell und portofrei erhältlich bei

beck-shop.de
DIE FACHBUCHHANDLUNG

Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte.
2 Systems Approach: the Nature of Coupled Models ...75
 2.0 Introduction...75
 2.1 Fluxes, Compartments and Ordering of Feedbacks....................................76
 2.1.1 Introduction and Definitions..77
 2.1.2 Inter-compartmental Coupling ..83
 2.1.3 Intra-compartmental Coupling ..92
 2.1.4 Final Remarks..95
 Box 2.1-1: Coupled Flow and Transport Modelling a
 Convection Cell...96
 2.2 Non-linearities ..97
 2.2.0 Overview of Non-linear Dynamics in Hydrology97
 2.2.1 Definition and Scope ..99
 2.2.2 Types and Effects of Non-linearity ..101
 2.2.3 Solution of Non-linear Problems...104
 Box 2.2-1 Testing of Linearity by the Principle of
 Superposition ..115
 Box 2.2-2 Example of Non-linear Behaviour: Response of
 Vegetation on Water Stress..117
 Box 2.2-3 Reduction in Rainfall due to Deforestation in the
 Amazon Forest ..119
 2.3 Parameterisation of Complex Hydrological Systems123
 2.3.1 Mechanistic Modelling..123
 2.3.2 Uncertainty and Probabilistic Models133
 2.3.3 Validation and Model Performance Evaluation.......................143
 Box 2.3-1 Soil-Vegetation-Atmosphere Transfer Schemes
 (SVATS) ..145
 Box 2.3-2 Groundwater Models ..146
 Box 2.3-3 Time Integration and Systems Theory148
 Box 2.3-4 Monte Carlo Method ..150
 Box 2.3-5 Geostatistics, Kriging and Spatial Variability ...153
 Box 2.3-6 A Common Framework for Calibration and
 Data Assimilation..155
 References...157

3 Systematisation of the Interactions between Hydrological and
Related Cycles..165
 3.0 Introduction...165
 3.1 Coupled Processes and Interaction Matrix ..167
 3.1.1 Box-and-arrow Diagram of the Hydrological and related
 Cycles ..168
 3.1.2 Interaction Matrix of the Hydrological and related Cycles169
 3.1.3 Discussion of the Interaction Matrix170
 3.2 Coupling Aspects of Heat and Mass Transfer.....................................175
 3.2.1 Intra-compartmental ...175

References...157
Contents

4.5.3 Complexity of the Study .. 242
4.5.4 Experiences .. 245

4.6 A Distributed Model of Runoff Generation
in the Permafrost Regions ... 246
4.6.1 Objectives and Motivation ... 246
4.6.2 Short Description of the Mode .. 247
4.6.3 Complexity of the Study .. 248
4.6.4 Experiences .. 252

4.7 Investigations on the Impact of Land-use Changes using
an Integrated Hydrometeorological Model .. 253
4.7.1 Motivation and Objectives ... 253
4.7.2 Short Description of the Study .. 253
4.7.3 Complexity of the Study .. 255
4.7.4 Experiences .. 257

4.8 The Influence of Anthropogenic Landscape Changes
on Weather in South Florida ... 259
4.8.1 Motivation and Objectives ... 259
4.8.2 Description of the Study .. 259
4.8.3 Complexity of the Study .. 259
4.8.4 Results ... 261
4.8.5 Conclusions ... 262

4.9 CLIMBER-2: An Earth System Model of
Intermediate Complexity .. 264
4.9.1 Motivation and Objectives of the Study 264
4.9.2 Short Description of the Study .. 265
4.9.3 Complexity of the Study .. 266
4.9.4 Experiences (Lessons Learned) ... 267

4.10 Feedbacks and Coupling between Water, Carbon and Nutrient Cycling
at the Hillslope Scale ... 269
4.10.1 Motivation and Objectives for the Coupling Approach 269
4.10.2 Short Description of the Study .. 270
4.10.3 Complexity of the Study .. 274
4.10.4 Experiences .. 278

4.11 The Boreal Ecosystem-Atmosphere Experiment (BOREAS) 280
4.11.1 Motivation and Objectives for the Coupling Approach 280
4.11.2 Short Description of the Study .. 281
4.11.3 Complexity of the Study .. 282
4.11.4 Experiences .. 284

4.12 Integrated Modelling of Water Availability and Vulnerability of
Ecosystems and Society in the Semi-arid Northeast Brazil 287
4.12.1 Motivation and Objectives for the Coupling Approach 287
4.12.2 Short Description of the Study .. 287
4.12.3 Complexity of the Study .. 290
4.12.4 Experiences .. 292