Interest Rate Models - Theory and Practice

With Smile, Inflation and Credit

Bearbeitet von
Damiano Brigo, Fabio Mercurio

Neuausgabe 2007. Buch. LVI, 982 S. Hardcover
ISBN 978 3 540 22149 4
Format (B x L): 15,5 x 23,5 cm
Gewicht: 920 g

Weitere Fachgebiete > Mathematik > Stochastik > Wahrscheinlichkeitsrechnung
Zu Leseprobe

schnell und portofrei erhältlich bei

beck-shop.de
DIE FACHBUCHHANDLUNG

Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte.
Contents

Preface .. VII
Motivation .. VII
Aims, Readership and Book Structure XII
Final Word and Acknowledgments XIV
Description of Contents by Chapter XIX

Abbreviations and Notation .. XXXV

Part I. BASIC DEFINITIONS AND NO ARBITRAGE

1. **Definitions and Notation** .. 1
 1.1 The Bank Account and the Short Rate 2
 1.2 Zero-Coupon Bonds and Spot Interest Rates 4
 1.3 Fundamental Interest-Rate Curves 9
 1.4 Forward Rates ... 11
 1.5 Interest-Rate Swaps and Forward Swap Rates 13
 1.6 Interest-Rate Caps/Floors and Swaptions 16

2. **No-Arbitrage Pricing and Numeraire Change** 23
 2.1 No-Arbitrage in Continuous Time 24
 2.2 The Change-of-Numeraire Technique 26
 2.3 A Change of Numeraire Toolkit (Brigo & Mercurio 2001c) 28
 2.3.1 A helpful notation: “DC” 35
 2.4 The Choice of a Convenient Numeraire 37
 2.5 The Forward Measure ... 38
 2.6 The Fundamental Pricing Formulas 39
 2.6.1 The Pricing of Caps and Floors 40
 2.7 Pricing Claims with Deferred Payoffs 42
 2.8 Pricing Claims with Multiple Payoffs 42
 2.9 Foreign Markets and Numeraire Change 44
3. **One-factor short-rate models** ... 51
 3.1 Introduction and Guided Tour 51
 3.2 Classical Time-Homogeneous Short-Rate Models 57
 3.2.1 The Vasicek Model .. 58
 3.2.2 The Dothan Model .. 62
 3.2.3 The Cox, Ingersoll and Ross (CIR) Model 64
 3.2.4 Affine Term-Structure Models 68
 3.2.5 The Exponential-Vasicek (EV) Model 70
 3.3 The Hull-White Extended Vasicek Model 71
 3.3.1 The Short-Rate Dynamics 72
 3.3.2 Bond and Option Pricing 75
 3.3.3 The Construction of a Trinomial Tree 78
 3.4 Possible Extensions of the CIR Model 80
 3.5 The Black-Karasinski Model 82
 3.5.1 The Short-Rate Dynamics 83
 3.5.2 The Construction of a Trinomial Tree 85
 3.6 Volatility Structures in One-Factor Short-Rate Models 86
 3.7 Humped-Volatility Short-Rate Models 92
 3.8 A General Deterministic-Shift Extension 95
 3.8.1 The Basic Assumptions 96
 3.8.2 Fitting the Initial Term Structure of Interest Rates ... 97
 3.8.3 Explicit Formulas for European Options 99
 3.8.4 The Vasicek Case ... 100
 3.9 The CIR++ Model .. 102
 3.9.1 The Construction of a Trinomial Tree 105
 3.9.2 Early Exercise Pricing via Dynamic Programming 106
 3.9.3 The Positivity of Rates and Fitting Quality 106
 3.9.4 Monte Carlo Simulation 109
 3.9.5 Jump Diffusion CIR and CIR++ models (JCIR, JCIR++) 109
 3.10 Deterministic-Shift Extension of Lognormal Models 110
 3.11 Some Further Remarks on Derivatives Pricing 112
 3.11.1 Pricing European Options on a Coupon-Bearing Bond 112
 3.11.2 The Monte Carlo Simulation 114
 3.11.3 Pricing Early-Exercise Derivatives with a Tree 116
 3.11.4 A Fundamental Case of Early Exercise: Bermudan-Style Swaptions .. 121
 3.12 Implied Cap Volatility Curves 124
 3.12.1 The Black and Karasinski Model 125
 3.12.2 The CIR++ Model ... 126
 3.12.3 The Extended Exponential-Vasicek Model 128
 3.13 Implied Swaption Volatility Surfaces 129
 3.13.1 The Black and Karasinski Model 130
3.13.2 The Extended Exponential-Vasicek Model 131
3.14 An Example of Calibration to Real-Market Data 132

4. Two-Factor Short-Rate Models 137
4.1 Introduction and Motivation 137
4.2 The Two-Additive-Factor Gaussian Model G2++ 142
4.2.1 The Short-Rate Dynamics 143
4.2.2 The Pricing of a Zero-Coupon Bond 144
4.2.3 Volatility and Correlation Structures in Two-Factor Models .. 148
4.2.4 The Pricing of a European Option on a Zero-Coupon Bond ... 153
4.2.5 The Analogy with the Hull-White Two-Factor Model . 159
4.2.6 The Construction of an Approximating Binomial Tree . 162
4.2.7 Examples of Calibration to Real-Market Data 166
4.3 The Two-Additive-Factor Extended CIR/LS Model CIR2++ 175
4.3.1 The Basic Two-Factor CIR2 Model 176
4.3.2 Relationship with the Longstaff and Schwartz Model (LS) ... 177
4.3.3 Forward-Measure Dynamics and Option Pricing for CIR2 .. 178
4.3.4 The CIR2++ Model and Option Pricing 179

5. The Heath-Jarrow-Morton (HJM) Framework 183
5.1 The HJM Forward-Rate Dynamics 185
5.2 Markovianity of the Short-Rate Process 186
5.3 The Ritchken and Sankarasubramanian Framework 187
5.4 The Mercurio and Moraleda Model 191

Part III. MARKET MODELS

6. The LIBOR and Swap Market Models (LFM and LSM) 195
6.1 Introduction ... 195
6.2 Market Models: a Guided Tour 196
6.3 The Lognormal Forward-LIBOR Model (LFM) 207
6.3.1 Some Specifications of the Instantaneous Volatility of Forward Rates 210
6.3.2 Forward-Rate Dynamics under Different Numeraire 213
6.4 Calibration of the LFM to Caps and Floors Prices 220
6.4.1 Piecewise-Constant Instantaneous-Volatility Structures 223
6.4.2 Parametric Volatility Structures 224
6.4.3 Cap Quotes in the Market 225
6.5 The Term Structure of Volatility 226
6.5.1 Piecewise-Constant Instantaneous Volatility Structures 228
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5.2</td>
<td>Parametric Volatility Structures</td>
<td>231</td>
</tr>
<tr>
<td>6.6</td>
<td>Instantaneous Correlation and Terminal Correlation</td>
<td>234</td>
</tr>
<tr>
<td>6.7</td>
<td>Swaptions and the Lognormal Forward-Swap Model (LSM)</td>
<td>237</td>
</tr>
<tr>
<td>6.7.1</td>
<td>Swaptions Hedging</td>
<td>241</td>
</tr>
<tr>
<td>6.7.2</td>
<td>Cash-Settled Swaptions</td>
<td>243</td>
</tr>
<tr>
<td>6.8</td>
<td>Incompatibility between the LFM and the LSM</td>
<td>244</td>
</tr>
<tr>
<td>6.9</td>
<td>The Structure of Instantaneous Correlations</td>
<td>246</td>
</tr>
<tr>
<td>6.9.1</td>
<td>Some convenient full rank parameterizations</td>
<td>248</td>
</tr>
<tr>
<td>6.9.2</td>
<td>Reduced-rank formulations: Rebonato’s angles and eigenvalues zeroing</td>
<td>250</td>
</tr>
<tr>
<td>6.9.3</td>
<td>Reducing the angles</td>
<td>259</td>
</tr>
<tr>
<td>6.10</td>
<td>Monte Carlo Pricing of Swaptions with the LFM</td>
<td>264</td>
</tr>
<tr>
<td>6.11</td>
<td>Monte Carlo Standard Error</td>
<td>266</td>
</tr>
<tr>
<td>6.12</td>
<td>Monte Carlo Variance Reduction: Control Variate Estimator</td>
<td>269</td>
</tr>
<tr>
<td>6.13</td>
<td>Rank-One Analytical Swaption Prices</td>
<td>271</td>
</tr>
<tr>
<td>6.14</td>
<td>Rank-r Analytical Swaption Prices</td>
<td>277</td>
</tr>
<tr>
<td>6.15</td>
<td>A Simpler LFM Formula for Swaptions Volatilities</td>
<td>281</td>
</tr>
<tr>
<td>6.16</td>
<td>A Formula for Terminal Correlations of Forward Rates</td>
<td>284</td>
</tr>
<tr>
<td>6.17</td>
<td>Calibration to Swaptions Prices</td>
<td>287</td>
</tr>
<tr>
<td>6.18</td>
<td>Instantaneous Correlations: Inputs (Historical Estimation) or Outputs (Fitting Parameters)?</td>
<td>290</td>
</tr>
<tr>
<td>6.19</td>
<td>The exogenous correlation matrix</td>
<td>291</td>
</tr>
<tr>
<td>6.19.1</td>
<td>Historical Estimation</td>
<td>292</td>
</tr>
<tr>
<td>6.19.2</td>
<td>Pivot matrices</td>
<td>295</td>
</tr>
<tr>
<td>6.20</td>
<td>Connecting Caplet and $S \times 1$-Swaption Volatilities</td>
<td>300</td>
</tr>
<tr>
<td>6.21</td>
<td>Forward and Spot Rates over Non-Standard Periods</td>
<td>307</td>
</tr>
<tr>
<td>6.21.1</td>
<td>Drift Interpolation</td>
<td>308</td>
</tr>
<tr>
<td>6.21.2</td>
<td>The Bridging Technique</td>
<td>310</td>
</tr>
</tbody>
</table>

7. Cases of Calibration of the LIBOR Market Model | 313

7.1 Inputs for the First Cases | 315

7.2 Joint Calibration with Piecewise-Constant Volatilities as in TABLE 5 | 315

7.3 Joint Calibration with Parameterized Volatilities as in Formulation 7 | 319

7.4 Exact Swaptions “Cascade” Calibration with Volatilities as in TABLE 1 | 322

7.4.1 Some Numerical Results | 330

7.5 A Pause for Thought | 337

7.5.1 First summary | 337

7.5.2 An automatic fast analytical calibration of LFM to swaptions. Motivations and plan | 338

7.6 Further Numerical Studies on the Cascade Calibration Algorithm | 340
7.6.1 Cascade Calibration under Various Correlations and Ranks .. 342
7.6.2 Cascade Calibration Diagnostics: Terminal Correlation and Evolution of Volatilities 346
7.6.3 The interpolation for the swaption matrix and its impact on the CCA 349
7.7 Empirically efficient Cascade Calibration 351
7.7.1 CCA with Endogenous Interpolation and Based Only on Pure Market Data 352
7.7.2 Financial Diagnostics of the RCCAEI test results 359
7.7.3 Endogenous Cascade Interpolation for missing swaptions volatilities quotes 364
7.7.4 A first partial check on the calibrated σ parameters stability 364
7.8 Reliability: Monte Carlo tests .. 366
7.9 Cascade Calibration and the cap market 369
7.10 Cascade Calibration: Conclusions 372

8. Monte Carlo Tests for LFM Analytical Approximations ... 377

8.1 First Part. Tests Based on the Kullback Leibler Information (KLI) ... 378
8.1.1 Distance between distributions: The Kullback Leibler information .. 378
8.1.2 Distance of the LFM swap rate from the lognormal family of distributions 381
8.1.3 Monte Carlo tests for measuring KLI 384
8.1.4 Conclusions on the KLI-based approach 391
8.2 Second Part: Classical Tests 392
8.3 The “Testing Plan” for Volatilities 392
8.4 Test Results for Volatilities ... 396
8.4.1 Case (1): Constant Instantaneous Volatilities 396
8.4.2 Case (2): Volatilities as Functions of Time to Maturity 401
8.4.3 Case (3): Humped and Maturity-Adjusted Instantaneous Volatilities Depending only on Time to Maturity 410
8.5 The “Testing Plan” for Terminal Correlations 421
8.6 Test Results for Terminal Correlations 427
8.6.1 Case (i): Humped and Maturity-Adjusted Instantaneous Volatilities Depending only on Time to Maturity, Typical Rank-Two Correlations 427
8.6.2 Case (ii): Constant Instantaneous Volatilities, Typical Rank-Two Correlations 430
8.6.3 Case (iii): Humped and Maturity-Adjusted Instantaneous Volatilities Depending only on Time to Maturity, Some Negative Rank-Two Correlations 432
<table>
<thead>
<tr>
<th>Page</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>438</td>
<td>8.6.4 Case (iv): Constant Instantaneous Volatilities, Some Negative Rank-Two Correlations</td>
</tr>
<tr>
<td>439</td>
<td>8.6.5 Case (v): Constant Instantaneous Volatilities, Perfect Correlations, Upwardly Shifted Φ's</td>
</tr>
<tr>
<td>442</td>
<td>8.7 Test Results: Stylized Conclusions</td>
</tr>
<tr>
<td>447</td>
<td>Part IV. THE VOLATILITY SMILE</td>
</tr>
<tr>
<td>447</td>
<td>9. Including the Smile in the LFM</td>
</tr>
<tr>
<td>450</td>
<td>9.1 A Mini-tour on the Smile Problem</td>
</tr>
<tr>
<td>450</td>
<td>9.2 Modeling the Smile</td>
</tr>
<tr>
<td>453</td>
<td>10. Local-Volatility Models</td>
</tr>
<tr>
<td>454</td>
<td>10.1 The Shifted-Lognormal Model</td>
</tr>
<tr>
<td>456</td>
<td>10.2 The Constant Elasticity of Variance Model</td>
</tr>
<tr>
<td>459</td>
<td>10.3 A Class of Analytically-tractable Models</td>
</tr>
<tr>
<td>463</td>
<td>10.4 A Lognormal-Mixture (LM) Model</td>
</tr>
<tr>
<td>467</td>
<td>10.5 Forward Rates Dynamics under Different Measures</td>
</tr>
<tr>
<td>469</td>
<td>10.5.1 Decorrelation Between Underlying and Volatility</td>
</tr>
<tr>
<td>469</td>
<td>10.6 Shifting the LM Dynamics</td>
</tr>
<tr>
<td>471</td>
<td>10.7 A Lognormal-Mixture with Different Means (LMDM)</td>
</tr>
<tr>
<td>473</td>
<td>10.8 The Case of Hyperbolic-Sine Processes</td>
</tr>
<tr>
<td>475</td>
<td>10.9 Testing the Above Mixture-Models on Market Data</td>
</tr>
<tr>
<td>478</td>
<td>10.10 A Second General Class</td>
</tr>
<tr>
<td>483</td>
<td>10.11 A Particular Case: A Mixture of GBM's</td>
</tr>
<tr>
<td>486</td>
<td>10.12 An Extension of the GBM Mixture Model Allowing for Implied Volatility Skews</td>
</tr>
<tr>
<td>489</td>
<td>10.13 A General Dynamics à la Dupire (1994)</td>
</tr>
<tr>
<td>495</td>
<td>11. Stochastic-Volatility Models</td>
</tr>
<tr>
<td>497</td>
<td>11.1 The Andersen and Brotherton-Ratcliffe (2001) Model</td>
</tr>
<tr>
<td>501</td>
<td>11.2 The Wu and Zhang (2002) Model</td>
</tr>
<tr>
<td>504</td>
<td>11.3 The Piterbarg (2003) Model</td>
</tr>
<tr>
<td>508</td>
<td>11.4 The Hagan, Kumar, Lesniewski and Woodward (2002) Model</td>
</tr>
<tr>
<td>513</td>
<td>11.5 The Joshi and Rebonato (2003) Model</td>
</tr>
<tr>
<td>517</td>
<td>12. Uncertain-Parameter Models</td>
</tr>
<tr>
<td>519</td>
<td>12.1 The Shifted-Lognormal Model with Uncertain Parameters (SLMUP)</td>
</tr>
<tr>
<td>520</td>
<td>12.1.1 Relationship with the Lognormal-Mixture LVM</td>
</tr>
<tr>
<td>520</td>
<td>12.2 Calibration to Caplets</td>
</tr>
<tr>
<td>522</td>
<td>12.3 Swaption Pricing</td>
</tr>
<tr>
<td>524</td>
<td>12.4 Monte-Carlo Swaption Pricing</td>
</tr>
<tr>
<td>526</td>
<td>12.5 Calibration to Swaptions</td>
</tr>
</tbody>
</table>
12.6 Calibration to Market Data .. 528
12.7 Testing the Approximation for Swaptions Prices 530
12.8 Further Model Implications 535
12.9 Joint Calibration to Caps and Swaptions 539

Part V. EXAMPLES OF MARKET PAYOFFS

13. Pricing Derivatives on a Single Interest-Rate Curve 547
 13.1 In-Arrears Swaps .. 548
 13.2 In-Arrears Caps ... 550
 13.2.1 A First Analytical Formula (LFM) 550
 13.2.2 A Second Analytical Formula (G2++) 551
 13.3 Autocaps ... 551
 13.4 Caps with Deferred Caplets 552
 13.4.1 A First Analytical Formula (LFM) 553
 13.4.2 A Second Analytical Formula (G2++) 553
 13.5 Ratchet Caps and Floors 554
 13.5.1 Analytical Approximation for Ratchet Caps with the
 LFM .. 555
 13.6 Ratchets (One-Way Floaters) 556
 13.7 Constant-Maturity Swaps (CMS) 557
 13.7.1 CMS with the LFM 557
 13.7.2 CMS with the G2++ Model 559
 13.8 The Convexity Adjustment and Applications to CMS 559
 13.8.1 Natural and Unnatural Time Lags 559
 13.8.2 The Convexity-Adjustment Technique 561
 13.8.3 Deducing a Simple Lognormal Dynamics from the Ad-
 justment 565
 13.8.4 Application to CMS 565
 13.8.5 Forward Rate Resetting Unnaturally and Average-
 Rate Swaps 566
 13.9 Average Rate Caps 568
 13.10 Captions and Floortions 570
 13.11 Zero-Coupon Swaptions 571
 13.12 Eurodollar Futures 575
 13.12.1 The Shifted Two-Factor Vasicek G2++ Model 576
 13.12.2 Eurodollar Futures with the LFM 577
 13.13 LFM Pricing with “In-Between” Spot Rates 578
 13.13.1 Accrual Swaps 579
 13.13.2 Trigger Swaps 582
 13.14 LFM Pricing with Early Exercise and Possible Path Dependence584
 13.15 LFM: Pricing Bermudan Swaptions 588
 13.15.1 Least Squared Monte Carlo Approach 589
 13.15.2 Carr and Yang’s Approach 591
14. Pricing Derivatives on Two Interest-Rate Curves 607
 14.1 The Attractive Features of G2++ for Multi-Curve Payoffs ... 608
 14.1.1 The Model 608
 14.1.2 Interaction Between Models of the Two Curves “1”
 and “2” .. 610
 14.1.3 The Two-Models Dynamics under a Unique Conve-
 nient Forward Measure 611
 14.2 Quanto Constant-Maturity Swaps 613
 14.2.1 Quanto CMS: The Contract 613
 14.2.2 Quanto CMS: The G2++ Model 615
 14.2.3 Quanto CMS: Quanto Adjustment 621
 14.3 Differential Swaps 623
 14.3.1 The Contract 623
 14.3.2 Differential Swaps with the G2++ Model 624
 14.3.3 A Market-Like Formula 626
 14.4 Market Formulas for Basic Quanto Derivatives 626
 14.4.1 The Pricing of Quanto Caplets/Floorlets 627
 14.4.2 The Pricing of Quanto Caps/Floors 628
 14.4.3 The Pricing of Differential Swaps 629
 14.4.4 The Pricing of Quanto Swaptions 630
 14.5 Pricing of Options on two Currency LIBOR Rates 633
 14.5.1 Spread Options 635
 14.5.2 Options on the Product 637
 14.5.3 Trigger Swaps 638
 14.5.4 Dealing with Multiple Dates 639

Part VI. INFLATION

15. Pricing of Inflation-Indexed Derivatives 643
 15.1 The Foreign-Currency Analogy 644
 15.2 Definitions and Notation 645
 15.3 The JY Model .. 646

16. Inflation-Indexed Swaps .. 649
 16.1 Pricing of a ZCIIS 649
 16.2 Pricing of a YYIIS 651
 16.3 Pricing of a YYIIS with the JY Model 652
 16.4 Pricing of a YYIIS with a First Market Model 654
Table of Contents

16.5 Pricing of a YYIIS with a Second Market Model 657

17. Inflation-Indexed Caplets/Floorlets 661
 17.1 Pricing with the JY Model 661
 17.2 Pricing with the Second Market Model 663
 17.3 Inflation-Indexed Caps 665

18. Calibration to market data 669

19. Introducing Stochastic Volatility 673
 19.1 Modeling Forward CPI’s with Stochastic Volatility 674
 19.2 Pricing Formulae .. 676
 19.2.1 Exact Solution for the Uncorrelated Case 677
 19.2.2 Approximated Dynamics for Non-zero Correlations ... 680
 19.3 Example of Calibration 681

20. Pricing Hybrids with an Inflation Component 689
 20.1 A Simple Hybrid Payoff 689

Part VII. CREDIT

21. Introduction and Pricing under Counterparty Risk 695
 21.1 Introduction and Guided Tour 696
 21.1.1 Reduced form (Intensity) models 697
 21.1.2 CDS Options Market Models 699
 21.1.3 Firm Value (or Structural) Models 702
 21.1.4 Further Models 704
 21.1.5 The Multi-name picture: FtD, CDO and Copula Func-
 tions .. 705
 21.1.6 First to Default (FtD) Basket 705
 21.1.7 Collateralized Debt Obligation (CDO) Tranches 707
 21.1.8 Where can we introduce dependence? 708
 21.1.9 Copula Functions 710
 21.1.10 Dynamic Loss models 718
 21.1.11 What data are available in the market? 719
 21.2 Defaultable (corporate) zero coupon bonds 723
 21.2.1 Defaultable (corporate) coupon bonds 724
 21.3 Credit Default Swaps and Defaultable Floaters 724
 21.3.1 CDS payoffs: Different Formulations 725
 21.3.2 CDS pricing formulas 727
 21.3.3 Changing filtration: \mathcal{F}_t without default VS complete
 \mathcal{G}_t ... 728
 21.3.4 CDS forward rates: The first definition 730
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.3.5 Market quotes, model independent implied survival probabilities</td>
<td>731</td>
</tr>
<tr>
<td>21.3.6 A simpler formula for calibrating intensity to a single CDS</td>
<td>735</td>
</tr>
<tr>
<td>21.3.7 Different Definitions of CDS Forward Rates and Analogies with</td>
<td>737</td>
</tr>
<tr>
<td>the LIBOR and SWAP rates</td>
<td></td>
</tr>
<tr>
<td>21.3.8 Defaultable Floater and CDS</td>
<td>739</td>
</tr>
<tr>
<td>21.4 CDS Options and Callable Defaultable Floaters</td>
<td>743</td>
</tr>
<tr>
<td>21.5 Constant Maturity CDS</td>
<td>744</td>
</tr>
<tr>
<td>21.5.1 Some interesting Financial features of CMCDs</td>
<td>745</td>
</tr>
<tr>
<td>21.6 Interest-Rate Payoffs with Counterparty Risk</td>
<td>747</td>
</tr>
<tr>
<td>21.6.1 General Valuation of Counterparty Risk</td>
<td>748</td>
</tr>
<tr>
<td>21.6.2 Counterparty Risk in single Interest Rate Swaps (IRS)</td>
<td>750</td>
</tr>
<tr>
<td>22. Intensity Models</td>
<td>757</td>
</tr>
<tr>
<td>22.1 Introduction and Chapter Description</td>
<td>757</td>
</tr>
<tr>
<td>22.2 Poisson processes</td>
<td>759</td>
</tr>
<tr>
<td>22.2.1 Time homogeneous Poisson processes</td>
<td>760</td>
</tr>
<tr>
<td>22.2.2 Time inhomogeneous Poisson Processes</td>
<td>761</td>
</tr>
<tr>
<td>22.2.3 Cox Processes</td>
<td>763</td>
</tr>
<tr>
<td>22.3 CDS Calibration and Implied Hazard Rates/ Intensities</td>
<td>764</td>
</tr>
<tr>
<td>22.4 Inducing dependence between Interest-rates and the default event</td>
<td>776</td>
</tr>
<tr>
<td>22.5 The Filtration Switching Formula: Pricing under partial information</td>
<td>777</td>
</tr>
<tr>
<td>22.6 Default Simulation in reduced form models</td>
<td>778</td>
</tr>
<tr>
<td>22.6.1 Standard error</td>
<td>781</td>
</tr>
<tr>
<td>22.6.2 Variance Reduction with Control Variate</td>
<td>783</td>
</tr>
<tr>
<td>22.7 Stochastic Intensity: The SSRD model</td>
<td>785</td>
</tr>
<tr>
<td>22.7.1 A two-factor shifted square-root diffusion model for intensity</td>
<td>786</td>
</tr>
<tr>
<td>and interest rates (Brigo and Alfonsi (2003))</td>
<td></td>
</tr>
<tr>
<td>22.7.2 Calibrating the joint stochastic model to CDS: Separability</td>
<td>789</td>
</tr>
<tr>
<td>22.7.3 Discretization schemes for simulating ((\lambda, r))</td>
<td>797</td>
</tr>
<tr>
<td>22.7.4 Study of the convergence of the discretization schemes</td>
<td>801</td>
</tr>
<tr>
<td>for simulating CIR processes (Alfonsi (2005))</td>
<td></td>
</tr>
<tr>
<td>22.7.5 Gaussian dependence mapping: A tractable approximated SSRD</td>
<td>812</td>
</tr>
<tr>
<td>22.7.6 Numerical Tests: Gaussian Mapping and Correlation Impact</td>
<td>815</td>
</tr>
<tr>
<td>22.7.7 The impact of correlation on a few “test payoffs”</td>
<td>817</td>
</tr>
<tr>
<td>22.7.8 A pricing example: A Cancellable Structure</td>
<td>818</td>
</tr>
<tr>
<td>22.7.9 CDS Options and Jamshidian’s Decomposition</td>
<td>820</td>
</tr>
<tr>
<td>22.7.10 Bermudan CDS Options</td>
<td>830</td>
</tr>
</tbody>
</table>
22.8 Stochastic diffusion intensity is not enough: Adding jumps.
 The JCIR(++) Model .. 830
 22.8.1 The jump-diffusion CIR model (JCIR) 831
 22.8.2 Bond (or Survival Probability) Formula. 832
 22.8.3 Exact calibration of CDS: The JCIR++ model 833
 22.8.4 Simulation ... 833
 22.8.5 Jamshidian’s Decomposition. 834
 22.8.6 Attaining high levels of CDS implied volatility 836
 22.8.7 JCIR(++) models as a multi-name possibility 837
 22.9 Conclusions and further research 838

23. CDS Options Market Models 841
 23.1 CDS Options and Callable Defaultable Floaters 844
 23.1.1 Once-callable defaultable floaters 846
 23.2 A market formula for CDS options and callable defaultable
 floaters.. 847
 23.2.1 Market formulas for CDS Options 847
 23.2.2 Market Formula for callable DFRN 849
 23.2.3 Examples of Implied Volatilities from the Market 852
 23.3 Towards a Completely Specified Market Model 854
 23.3.1 First Choice. One-period and two-period rates 855
 23.3.2 Second Choice: Co-terminal and one-period CDS rates
 market model 860
 23.3.3 Third choice. Approximation: One-period CDS rates
 dynamics .. 861
 23.4 Hints at Smile Modeling 863
 23.5 Constant Maturity Credit Default Swaps (CMCDS) with the
 market model ... 864
 23.5.1 CDS and Constant Maturity CDS 864
 23.5.2 Proof of the main result 867
 23.5.3 A few numerical examples 869

Part VIII. APPENDICES

A. Other Interest-Rate Models 877
 A.1 Brennan and Schwartz’s Model 877
 A.2 Balduzzi, Das, Foresi and Sundaram’s Model 878
 A.3 Flesaker and Hughston’s Model 879
 A.4 Rogers’s Potential Approach 881
 A.5 Markov Functional Models 881
B. Pricing Equity Derivatives under Stochastic Rates 883
 B.1 The Short Rate and Asset-Price Dynamics 883
 B.1.1 The Dynamics under the Forward Measure 886
 B.2 The Pricing of a European Option on the Given Asset 888
 B.3 A More General Model 889
 B.3.1 The Construction of an Approximating Tree for r 890
 B.3.2 The Approximating Tree for S 892
 B.3.3 The Two-Dimensional Tree 893

C. A Crash Intro to Stochastic Differential Equations and Poisson Processes ... 897
 C.1 From Deterministic to Stochastic Differential Equations 897
 C.2 Ito’s Formula ... 904
 C.3 Discretizing SDEs for Monte Carlo: Euler and Milstein Schemes906
 C.4 Examples ... 908
 C.5 Two Important Theorems 910
 C.6 A Crash Intro to Poisson Processes 913
 C.6.1 Time inhomogeneous Poisson Processes 915
 C.6.2 Doubly Stochastic Poisson Processes (or Cox Processes) 916
 C.6.3 Compound Poisson processes 917
 C.6.4 Jump-diffusion Processes 918

D. A Useful Calculation .. 919

E. A Second Useful Calculation 921

F. Approximating Diffusions with Trees 925

G. Trivia and Frequently Asked Questions 931

H. Talking to the Traders 935

References .. 951

Index .. 967