Contents

Preface XV
List of Contributors XVII

Part I Nanostructured Devices 1

1 **Modeling Quantum-Dot-Based Devices** 3
Kathy Lüdge
1.1 Introduction 3
1.2 Microscopic Coulomb Scattering Rates 4
1.2.1 Carrier–Carrier Scattering 5
1.2.2 Detailed Balance 8
1.3 Laser Model with Ground and Excited States in the QDs 9
1.3.1 Temperature Effects 14
1.3.2 Impact of Energy Confinement 15
1.3.3 Eliminating the Excited State Population Dynamics 17
1.4 Quantum Dot Switching Dynamics and Modulation Response 18
1.4.1 Inhomogeneous Broadening 19
1.4.2 Temperature-Dependent Losses in the Reservoir 20
1.4.3 Comparison to Experimental Results 20
1.5 Asymptotic Analysis 21
1.5.1 Consequences of Optimizing Device Performance 25
1.6 QD Laser with Doped Carrier Reservoir 26
1.7 Model Reduction 28
1.8 Comparison to Quantum Well Lasers 29
1.9 Summary 30
Acknowledgment 30
References 30

2 **Exploiting Noise and Polarization Bistability in Vertical-Cavity Surface-Emitting Lasers for Fast Pulse Generation and Logic Operations** 35
Jordi Zamora-Munt and Cristina Masoller
2.1 Introduction 35
2.2 Spin-Flip Model 39
2.3 Polarization Switching 40
2.4 Pulse Generation Via Asymmetric Triangular Current Modulation 44
2.5 Influence of the Noise Strength 48
2.6 Logic Stochastic Resonance in Polarization-Bistable VCSELs 49
2.7 Reliability of the VCSEL-Based Stochastic Logic Gate 52
2.8 Conclusions 53
Acknowledgment 54
References 54

3 Mode Competition Driving Laser Nonlinear Dynamics 57
Marc Sciamanna
3.1 Introduction 57
3.2 Mode Competition in Semiconductor Lasers 58
3.3 Low-Frequency Fluctuations in Multimode Lasers 61
3.4 External-Cavity Mode Beating and Bifurcation Bridges 64
3.5 Multimode Dynamics in Lasers with Short External Cavity 65
3.6 Polarization Mode Hopping in VCSEL with Time Delay 67
3.6.1 Polarization Switching Induced by Optical Feedback 67
3.6.2 Polarization Mode Hopping with Time-Delay Dynamics 69
3.6.3 Coherence Resonance in a Bistable System with Time Delay 71
3.7 Polarization Injection Locking Properties of VCSELs 73
3.7.1 Optical Injection Dynamics 74
3.7.2 Polarization and Transverse Mode Switching and Locking: Experiment 76
3.7.3 Bifurcation Picture of a Two-Mode Laser 81
3.8 Dynamics of a Two-Mode Quantum Dot Laser with Optical Injection 83
3.9 Conclusions 85
Acknowledgments 86
References 86

4 Quantum Cascade Laser: An Emerging Technology 91
Andreas Wacker
4.1 The Essence of QCLs 92
4.1.1 Semiconductor Heterostructures 92
4.1.2 Electric Pumping 94
4.1.3 Cascading 94
4.2 Different Designs 96
4.2.1 Optical Transition and Lifetime of the Upper State 96
4.2.2 Effective Extraction from the Lower Laser Level 96
4.2.3 Injection 97
4.3 Reducing the Number of Levels Involved 98
4.4 Modeling 100
Contents

4.5 Outlook 103
Acknowledgments 104
4.6 Appendix: Derivation of Eq. (4.1) 104
References 105

5 Controlling Charge Domain Dynamics in Superlattices 111
Mark T. Greenaway, Alexander G. Balanov, and T. Mark Fromhold
5.1 Model of Charge Domain Dynamics 112
5.2 Results 117
5.2.1 Drift Velocity Characteristics for $\theta = 0^\circ, 25^\circ, \text{and} 40^\circ$ 118
5.2.2 Current–Voltage Characteristics for $\theta = 0^\circ, 25^\circ, \text{and} 40^\circ$ 119
5.2.3 $I(t)$ Curves for $\theta = 0^\circ, 25^\circ, \text{and} 40^\circ$ 120
5.2.4 Charge Dynamics for $\theta = 0^\circ, 25^\circ, \text{and} 40^\circ$ 122
5.2.5 Stability and Power of $I(t)$ Oscillations for $0^\circ < \theta < 90^\circ$ 128
5.2.6 Frequency of $I(t)$ for $0^\circ < \theta < 90^\circ$ 130
5.3 Conclusion 132
Acknowledgment 132
References 132

Part II Coupled Laser Device 137

6 Quantum Dot Laser Tolerance to Optical Feedback 139
Christian Otto, Kathy Lüdge, Evgeniy Viktorov, and Thomas Erneux
6.1 Introduction 139
6.2 QD Laser Model with One Carrier Type 141
6.3 Electron-Hole Model for QD Laser 142
6.3.1 Similar Scattering Times τ_e and τ_h 143
6.3.2 Different Scattering Times τ_e and τ_h 144
6.3.3 Small Scattering Lifetime of the Holes $a = O(1)$ 144
6.3.4 Very Small Scattering Lifetime of the Holes $a = O(\gamma^{-1/2})$ 144
6.4 Summary 145
Acknowledgment 146
6.5 Appendix A: Rate Equations for Quantum Well Lasers 146
6.6 Appendix B: Asymptotic Analysis for a QD Laser Model with One Carrier Type 148
6.7 Appendix C: Asymptotic Analysis for a QD Laser Model with Two Carrier Types 153
References 158

7 Bifurcation Study of a Semiconductor Laser with Saturable Absorber and Delayed Optical Feedback 161
Bernd Krauskopf and Jamie J. Walker
7.1 Introduction 161
7.2 Bifurcation Analysis of the SLSA 164
7.3 Equilibria of the DDE and Their Stability 168
7.4 Bifurcation Study for Excitable SLSA 171
7.5 Bifurcation Study for Nonexcitable SLSA 173
7.6 Dependence of the Bifurcation Diagram on the Gain Pump Parameter 176
7.7 Conclusions 178
References 179

8 Modeling of Passively Mode-Locked Semiconductor Lasers 183
Andrei G. Vladimirov, Dmitrii Rachinskii, and Matthias Wolfrum
8.1 Introduction 183
8.2 Derivation of the Model Equations 184
8.3 Numerical Results 189
8.4 Stability Analysis for the ML Regime in the Limit of Infinite Bandwidth 197
8.4.1 New’s Stability Criterion 197
8.4.2 Slow Stage 199
8.4.3 Fast Stage 199
8.4.4 Laser Without Spectral Filtering 200
8.5 The Q-Switching Instability of the ML Regime 203
8.5.1 Laser Without Spectral Filtering 204
8.5.2 Weak Saturation Limit 207
8.5.3 Variational Approach 209
8.6 Conclusion 212
Acknowledgments 213
References 213

9 Dynamical and Synchronization Properties of Delay-Coupled Lasers 217
Cristina M. Gonzalez, Miguel C. Soriano, M. Carme Torrent, Jordi Garcia-Ojalvo, and Ingo Fischer
9.1 Motivation: Why Coupling Lasers? 217
9.2 Dynamics of Two Mutually Delay-Coupled Lasers 218
9.2.1 Dynamical Instability 218
9.2.2 Instability of Isochronous Solution 220
9.3 Properties of Leader–Laggard Synchronization 224
9.3.1 Emergence of Leader–Laggard Synchronization 224
9.3.2 Control of Lag Synchronization 226
9.4 Dynamical Relaying as Stabilization Mechanism for Zero-Lag Synchronization 228
9.4.1 Laser Relay 228
9.4.2 Mirror Relay 230
9.5 Modulation Characteristics of Delay-Coupled Lasers 231
9.5.1 Periodic Modulation 231
9.5.2 Noise Modulation 235
Contents

12.3.2.2 Existence of a Local Stable Direction 303
12.3.2.3 Other Stable and Unstable Local Directions 304
12.3.3 Stable Homoclinic Orbit to One-Cluster State 305
12.4 Two-Cluster States 306
12.4.1 Stability of Two-Cluster States 308
12.5 Intermediate State for Symmetric PRC with $\beta = 0.5$ 309
12.6 Conclusions 310
12.7 Appendix: Existence of a Homoclinic Orbit 310
References 315

13 Broadband Chaos 317
Kristine E. Callan, Lucas Illing, and Daniel J. Gauthier
13.1 Introduction 317
13.2 Optoelectronic Oscillators 318
13.3 Instability Threshold 323
13.4 Transition to Broadband Chaos 325
13.5 Asymptotic Analysis 327
13.6 Summary and Outlook 330
Acknowledgments 331
References 331

14 Synchronization of Chaotic Networks and Secure Communication 333
Ido Kanter and Wolfgang Kinzel
14.1 Introduction 333
14.2 Unidirectional Coupling 334
14.3 Transmission of Information 335
14.4 Bidirectional Coupling 336
14.5 Mutual Chaos Pass Filter 339
14.5.1 Protocol 342
14.6 Private Filters 345
14.7 Networks 346
14.8 Outlook 350
References 350

15 Desultory Dynamics in Diode-Lasers: Drift, Diffusion, and Delay 355
K. Alan Shore
15.1 Introduction 355
15.2 Carrier Diffusion in Diode Lasers 357
15.3 Intersubband Laser Dynamics 359
15.4 Carrier Diffusion Effects in VCSELS 362
15.4.1 Transverse Mode Competition and Secondary Pulsations 362
15.4.2 VCSEL Polarization Selection 363
15.4.3 Nanospin VCSELS 363
15.5 Delayed Feedback and Control of VCSEL Polarization 364
15.6 VCSEL Chaos and Synchronization and Message Transmission 365
15.7 Delay Deletion: Nullified Time of Flight 369
15.8 Chaos Communications: Optimization and Robustness 371
15.9 Conclusion 372
Acknowledgments 373
References 373
Further Reading 380

Index 381