Contents

Preface to Second Edition XVII
Preface to the First Edition XIX

1 Introduction 1
1.1 Brief Review of Useful Concepts 2
1.2 Laser with Modulated Losses 4
1.3 Objectives of a New Analysis Procedure 11
1.4 Preview of Results 12
1.5 Organization of This Work 14

2 Discrete Dynamical Systems: Maps 19
2.1 Introduction 19
2.2 Logistic Map 20
2.3 Bifurcation Diagrams 22
2.4 Elementary Bifurcations in the Logistic Map 25
2.4.1 Saddle–Node Bifurcation 25
2.4.2 Period-Doubling Bifurcation 29
2.5 Map Conjugacy 32
2.5.1 Changes of Coordinates 32
2.5.2 Invariants of Conjugacy 33
2.6 Fully Developed Chaos in the Logistic Map 34
2.6.1 Iterates of the Tent Map 35
2.6.2 Lyapunov Exponents 36
2.6.3 Sensitivity to Initial Conditions and Mixing 37
2.6.4 Chaos and Density of (Unstable) Periodic Orbits 38
2.6.4.1 Number of Periodic Orbits of the Tent Map 38
2.6.4.2 Expansiveness Implies Infinitely Many Periodic Orbits 39
2.6.5 Symbolic Coding of Trajectories: First Approach 40
2.7 One-Dimensional Symbolic Dynamics 42
2.7.1 Partitions 42
2.7.2 Symbolic Dynamics of Expansive Maps 44
2.7.3 Grammar of Chaos: First Approach 48
2.7.3.1 Interval Arithmetics and Invariant Interval 48
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7.3.2</td>
<td>Existence of Forbidden Sequences</td>
<td>49</td>
</tr>
<tr>
<td>2.7.4</td>
<td>Kneading Theory</td>
<td>51</td>
</tr>
<tr>
<td>2.7.4.1</td>
<td>Ordering of Itineraries</td>
<td>52</td>
</tr>
<tr>
<td>2.7.4.2</td>
<td>Admissible Sequences</td>
<td>54</td>
</tr>
<tr>
<td>2.7.5</td>
<td>Bifurcation Diagram of the Logistic Map Revisited</td>
<td>55</td>
</tr>
<tr>
<td>2.7.5.1</td>
<td>Saddle–Node Bifurcations</td>
<td>55</td>
</tr>
<tr>
<td>2.7.5.2</td>
<td>Period-Doubling Bifurcations</td>
<td>56</td>
</tr>
<tr>
<td>2.7.5.3</td>
<td>Universal Sequence</td>
<td>57</td>
</tr>
<tr>
<td>2.7.5.4</td>
<td>Self-Similar Structure of the Bifurcation Diagram</td>
<td>58</td>
</tr>
<tr>
<td>2.8</td>
<td>Shift Dynamical Systems, Markov Partitions, and Entropy</td>
<td>59</td>
</tr>
<tr>
<td>2.8.1</td>
<td>Shifts of Finite Type and Topological Markov Chains</td>
<td>59</td>
</tr>
<tr>
<td>2.8.2</td>
<td>Periodic Orbits and Topological Entropy of a Markov Chain</td>
<td>61</td>
</tr>
<tr>
<td>2.8.3</td>
<td>Markov Partitions</td>
<td>63</td>
</tr>
<tr>
<td>2.8.4</td>
<td>Approximation by Markov Chains</td>
<td>65</td>
</tr>
<tr>
<td>2.8.5</td>
<td>Zeta Function</td>
<td>65</td>
</tr>
<tr>
<td>2.8.6</td>
<td>Dealing with Grammars</td>
<td>66</td>
</tr>
<tr>
<td>2.8.6.1</td>
<td>Simple Grammars</td>
<td>67</td>
</tr>
<tr>
<td>2.8.6.2</td>
<td>Complicated Grammars</td>
<td>69</td>
</tr>
<tr>
<td>2.9</td>
<td>Fingerprints of Periodic Orbits and Orbit Forcing</td>
<td>70</td>
</tr>
<tr>
<td>2.9.1</td>
<td>Permutation of Periodic Points as a Topological Invariant</td>
<td>70</td>
</tr>
<tr>
<td>2.9.2</td>
<td>Topological Entropy of a Periodic Orbit</td>
<td>72</td>
</tr>
<tr>
<td>2.9.3</td>
<td>Period 3 Implies Chaos and Sarkovskii’s Theorem</td>
<td>74</td>
</tr>
<tr>
<td>2.9.4</td>
<td>Period 3 Does Not Always Imply Chaos: Role of Phase-Space Topology</td>
<td>75</td>
</tr>
<tr>
<td>2.9.5</td>
<td>Permutations and Orbit Forcing</td>
<td>75</td>
</tr>
<tr>
<td>2.10</td>
<td>Two-Dimensional Dynamics: Smale’s Horseshoe</td>
<td>77</td>
</tr>
<tr>
<td>2.10.1</td>
<td>Horseshoe Map</td>
<td>77</td>
</tr>
<tr>
<td>2.10.2</td>
<td>Symbolic Dynamics of the Invariant Set</td>
<td>78</td>
</tr>
<tr>
<td>2.10.3</td>
<td>Dynamical Properties</td>
<td>81</td>
</tr>
<tr>
<td>2.10.4</td>
<td>Variations on the Horseshoe Map: Baker Maps</td>
<td>82</td>
</tr>
<tr>
<td>2.11</td>
<td>Hénon Map</td>
<td>85</td>
</tr>
<tr>
<td>2.11.1</td>
<td>A Once-Folding Map</td>
<td>85</td>
</tr>
<tr>
<td>2.11.2</td>
<td>Symbolic Dynamics of the Hénon Map: Coding</td>
<td>87</td>
</tr>
<tr>
<td>2.11.3</td>
<td>Symbolic Dynamics of the Hénon Map: Grammar</td>
<td>93</td>
</tr>
<tr>
<td>2.12</td>
<td>Circle Maps</td>
<td>96</td>
</tr>
<tr>
<td>2.12.1</td>
<td>A New Global Topology</td>
<td>96</td>
</tr>
<tr>
<td>2.12.2</td>
<td>Frequency Locking and Arnold Tongues</td>
<td>96</td>
</tr>
<tr>
<td>2.12.3</td>
<td>Chaotic Circle Maps as Limits of Annulus Maps</td>
<td>100</td>
</tr>
<tr>
<td>2.13</td>
<td>Annulus Maps</td>
<td>100</td>
</tr>
<tr>
<td>2.14</td>
<td>Summary</td>
<td>104</td>
</tr>
<tr>
<td>3</td>
<td>Continuous Dynamical Systems: Flows</td>
<td>105</td>
</tr>
<tr>
<td>3.1</td>
<td>Definition of Dynamical Systems</td>
<td>105</td>
</tr>
<tr>
<td>3.2</td>
<td>Existence and Uniqueness Theorem</td>
<td>106</td>
</tr>
<tr>
<td>3.3</td>
<td>Examples of Dynamical Systems</td>
<td>107</td>
</tr>
</tbody>
</table>
Contents

3.3.1 Duffing Equation 107
3.3.2 Van der Pol Equation 109
3.3.3 Lorenz Equations 111
3.3.4 Rössler Equations 113
3.3.5 Examples of Nondynamical Systems 114
3.3.5.1 Equation with Non-Lipschitz Forcing Terms 115
3.3.5.2 Delay Differential Equations 115
3.3.5.3 Stochastic Differential Equations 116
3.3.6 Additional Observations 117
3.4 Change of Variables 120
3.4.1 Diffeomorphisms 120
3.4.2 Examples 121
3.4.3 Structure Theory 124
3.5 Fixed Points 125
3.5.1 Dependence on Topology of Phase Space 125
3.5.2 How to Find Fixed Points in \mathbb{R}^n 126
3.5.3 Bifurcations of Fixed Points 127
3.5.4 Stability of Fixed Points 130
3.6 Periodic Orbits 131
3.6.1 Locating Periodic Orbits in $\mathbb{R}^{n-1} \times S^1$ 131
3.6.2 Bifurcations of Fixed Points 132
3.6.3 Stability of Fixed Points 133
3.7 Flows Near Nonsingular Points 134
3.8 Volume Expansion and Contraction 136
3.9 Stretching and Squeezing 137
3.10 The Fundamental Idea 138
3.11 Summary 139

4 Topological Invariants 141
4.1 Stretching and Squeezing Mechanisms 141
4.2 Linking Numbers 145
4.2.1 Definitions 146
4.2.2 Reidemeister Moves 147
4.2.3 Braids 148
4.2.4 Examples 151
4.2.5 Linking Numbers for a Horseshoe 153
4.2.6 Linking Numbers for the Lorenz Attractor 154
4.2.7 Linking Numbers for the Period-Doubling Cascade 154
4.2.8 Local Torsion 155
4.2.9 Writhe and Twist 156
4.2.10 Additional Properties 158
4.3 Relative Rotation Rates 159
4.3.1 Definition 160
4.3.2 Computing Relative Rotation Rates 160
4.3.3 Horseshoe Mechanism 163
Contents

4.3.4 Additional Properties 168
4.4 Relation between Linking Numbers and Relative Rotation Rates 169
4.5 Additional Uses of Topological Invariants 170
4.5.1 Bifurcation Organization 170
4.5.2 Torus Orbits 171
4.5.3 Additional Remarks 171
4.6 Summary 174

5 Branched Manifolds 175
5.1 Closed Loops 175
5.2 What Does This Have to Do with Dynamical Systems? 178
5.3 General Properties of Branched Manifolds 178
5.4 Birman–Williams Theorem 181
5.4.1 Birman–Williams Projection 182
5.4.2 Statement of the Theorem 183
5.5 Relaxation of Restrictions 184
5.5.1 Strongly Contracting Restriction 184
5.5.2 Hyperbolic Restriction 185
5.6 Examples of Branched Manifolds 186
5.6.1 Smale–Rössler System 186
5.6.2 Lorenz System 188
5.6.3 Duffing System 189
5.6.4 Van der Pol System 192
5.7 Uniqueness and Nonuniqueness 194
5.7.1 Local Moves 195
5.7.2 Global Moves 197
5.8 Standard Form 200
5.9 Topological Invariants 201
5.9.1 Kneading Theory 202
5.9.2 Linking Numbers 205
5.9.3 Relative Rotation Rates 207
5.10 Additional Properties 207
5.10.1 Period as Linking Number 208
5.10.2 EBK-Like Expression for Periods 208
5.10.3 Poincaré Section 209
5.10.4 Blow-Up of Branched Manifolds 210
5.10.5 Branched-Manifold Singularities 211
5.10.6 Constructing a Branched Manifold from a Map 212
5.10.7 Topological Entropy 213
5.11 Subtemplates 216
5.11.1 Two Alternatives 216
5.11.2 A Choice 218
5.11.3 Topological Entropy 219
5.11.4 Subtemplates of the Smale Horseshoe 221
Contents

5.11.5 Subtemplates Involving Tongues 222
5.12 Summary 224

6 **Topological Analysis Program** 227
6.1 Brief Summary of the Topological Analysis Program 227
6.2 Overview of the Topological Analysis Program 228
6.2.1 Find Periodic Orbits 228
6.2.2 Embed in \mathbb{R}^3 229
6.2.3 Compute Topological Invariants 230
6.2.4 Identify Template 230
6.2.5 Verify Template 231
6.2.6 Model Dynamics 232
6.2.7 Validate Model 233
6.3 Data 234
6.3.1 Data Requirements 235
6.3.2 Processing in the Time Domain 236
6.3.3 Processing in the Frequency Domain 238
6.3.3.1 High-Frequency Filter 238
6.3.3.2 Low-Frequency Filter 238
6.3.3.3 Derivatives and Integrals 239
6.3.3.4 Hilbert Transforms 240
6.3.3.5 Fourier Interpolation 241
6.3.6 Transform and Interpolation 242
6.4 Embeddings 243
6.4.1 Embeddings for Periodically Driven Systems 244
6.4.2 Differential Embeddings 244
6.4.3 Differential–Integral Embeddings 247
6.4.4 Embeddings with Symmetry 248
6.4.5 Time-Delay Embeddings 249
6.4.6 Coupled-Oscillator Embeddings 251
6.4.7 SVD Projections 252
6.4.8 SVD Embeddings 254
6.4.9 Embedding Theorems 254
6.5 Periodic Orbits 256
6.5.1 Close Returns Plots for Flows 256
6.5.1.1 Close Returns Histograms 258
6.5.1.2 Tests for Chaos 258
6.5.2 Close Returns in Maps 259
6.5.2.1 First Return Map 259
6.5.2.2 pth Return Map 260
6.5.3 Metric Methods 261
6.6 Computation of Topological Invariants 262
6.6.1 Embed Orbits 262
6.6.2 Linking Numbers and Relative Rotation Rates 262
6.6.3 Label Orbits 263
Contents

6.7 Identify Template 263
6.7.1 Period-1 and Period-2 Orbits 263
6.7.2 Missing Orbits 264
6.7.3 More Complicated Branched Manifolds 264
6.8 Validate Template 264
6.8.1 Predict Additional Topological Invariants 265
6.8.2 Compare 265
6.8.3 Global Problem 265
6.9 Model Dynamics 265
6.10 Validate Model 268
6.10.1 Qualitative Validation 269
6.10.2 Quantitative Validation 269
6.11 Summary 270

7 Folding Mechanisms: A_2 271
7.1 Belousov–Zhabotinskii Chemical Reaction 272
7.1.1 Location of Periodic Orbits 273
7.1.2 Embedding Attempts 274
7.1.3 Topological Invariants 278
7.1.4 Template 281
7.1.5 Dynamical Properties 281
7.1.6 Models 283
7.1.7 Model Verification 283
7.2 Laser with Saturable Absorber 285
7.3 Stringed Instrument 288
7.3.1 Experimental Arrangement 288
7.3.2 Flow Models 290
7.3.3 Dynamical Tests 291
7.3.4 Topological Analysis 291
7.4 Lasers with Low-Intensity Signals 294
7.4.1 SVD Embedding 295
7.4.2 Template Identification 296
7.4.3 Results of the Analysis 297
7.5 The Lasers in Lille 297
7.5.1 Class B Laser Model 298
7.5.2 CO$_2$ Laser with Modulated Losses 304
7.5.3 Nd-Doped YAG Laser 308
7.5.4 Nd-Doped Fiber Laser 311
7.5.5 Synthesis of Results 318
7.6 The Laser in Zaragoza 322
7.7 Neuron with Subthreshold Oscillations 328
7.8 Summary 334

8 Tearing Mechanisms: A_3 337
8.1 Lorenz Equations 337
8.1.1 Fixed Points 338
Contents

8.1.2 Stability of Fixed Points 339
8.1.3 Bifurcation Diagram 339
8.1.4 Templates 341
8.1.5 Shimizu–Morioka Equations 343
8.2 Optically Pumped Molecular Laser 343
8.2.1 Models 344
8.2.2 Amplitudes 346
8.2.3 Template 346
8.2.4 Orbits 347
8.2.5 Intensities 350
8.3 Fluid Experiments 352
8.3.1 Data 352
8.3.2 Template 353
8.4 Why $A\ell$? 354
8.5 Summary 354

9 Unfoldings 357
9.1 Catastrophe Theory as a Model 357
9.1.1 Overview 357
9.1.2 Example 358
9.1.3 Reduction to a Germ 359
9.1.4 Unfolding the Germ 361
9.1.5 Summary of Concepts 362
9.2 Unfolding of Branched Manifolds: Branched Manifolds as Germs 362
9.2.1 Unfolding of Folds 362
9.2.2 Unfolding of Tears 363
9.3 Unfolding within Branched Manifolds: Unfolding of the Horseshoe 365
9.3.1 Topology of Forcing: Maps 365
9.3.2 Topology of Forcing: Flows 366
9.3.3 Forcing Diagrams 369
9.3.3.1 Orbits with Zero Entropy 371
9.3.3.2 Orbits with Positive Entropy 372
9.3.3.3 Additional Comments 372
9.3.4 Basis Sets of Orbits 374
9.3.5 Coexisting Basins 375
9.4 Missing Orbits 375
9.5 Routes to Chaos 377
9.6 Orbit Forcing and Topological Entropy: Mathematical Aspects 378
9.6.1 General Outline 378
9.6.2 Basic Mathematical Concepts 379
9.6.2.1 Braids and Braid Types 379
9.6.2.2 Braids and Surface Homeomorphisms 380
9.6.2.3 Nielsen–Thurston Classification 381
9.6.2.4 Application to Periodic Orbits and Braid Types 382
9.7 Topological Measures of Chaos in Experiments 383
Contents

9.7.1 Mixing in Fluids 383
9.7.2 Chaos in an Optical Parametric Oscillator 385
9.8 Summary 389

10 Symmetry 391
10.1 Information Loss and Gain 391
10.1.1 Information Loss 391
10.1.2 Exchange of Symmetry 392
10.1.3 Information Gain 392
10.1.4 Symmetries of the Standard Systems 392
10.2 Cover and Image Relations 393
10.2.1 General Setup 393
10.3 Rotation Symmetry 1: Images 394
10.3.1 Image Equations and Flows 394
10.3.2 Image of Branched Manifolds 396
10.3.3 Image of Periodic Orbits 398
10.4 Rotation Symmetry 2: Covers 400
10.4.1 Topological Index 401
10.4.2 Covers of Branched Manifolds 402
10.4.3 Covers of Periodic Orbits 403
10.5 Peeling: a New Global Bifurcation 404
10.5.1 Orbit Perestroika 405
10.5.2 Covering Equations 405
10.6 Inversion Symmetry: Driven Oscillators 407
10.7 Duffing Oscillator 409
10.8 Van der Pol Oscillator 413
10.9 Summary 418

11 Bounding Tori 419
11.1 Stretching & Folding vs. Tearing & Squeezing 420
11.2 Inflation 421
11.3 Boundary of Inflation 422
11.4 Index 423
11.5 Projection 424
11.6 Nature of Singularities 426
11.7 Trinions 427
11.8 Poincaré Surface of Section 429
11.9 Construction of Canonical Forms 429
11.10 Perestroikas 432
11.10.1 Enlarging Branches 433
11.10.2 Starving Branches 433
11.11 Summary 435

12 Representation Theory for Strange Attractors 437
12.1 Embeddings, Representations, Equivalence 438
12.2 Simplest Class of Strange Attractors 439
12.3 Representation Labels 440
12.3.1 Parity 440
12.3.2 Global Torsion 441
12.3.3 Knot Type 445
12.4 Equivalence of Representations with Increasing Dimension 446
12.4.1 Parity 447
12.4.2 Knot Type 447
12.4.3 Global Torsion 448
12.5 Genus-\(g\) Attractors 450
12.6 Representation Labels 451
12.6.1 Parity 451
12.6.2 Multitorsion Index 451
12.6.3 Knot Type 452
12.7 Equivalence in Increasing Dimension 453
12.7.1 Parity and Knot Type 453
12.7.2 Multitorsion Index 453
12.8 Summary 455

13 Flows in Higher Dimensions 457
13.1 Review of Classification Theory in \(\mathbb{R}^3\) 457
13.2 General Setup 459
13.2.1 Spectrum of Lyapunov Exponents 459
13.2.2 Double Projection 461
13.3 Flows in \(\mathbb{R}^4\) 462
13.3.1 Cyclic Phase Spaces 462
13.3.2 Floppiness and Rigidity 462
13.3.3 Singularities in Return Maps 463
13.4 Cusps in Weakly Coupled, Strongly Dissipative Chaotic Systems 466
13.4.1 Coupled Logistic Maps 466
13.4.2 Coupled Diode Resonators 469
13.5 Cusp Bifurcation Diagrams 470
13.5.1 Cusp Return Maps 472
13.5.2 Structure in the Control Plane 472
13.5.3 Comparison with the Fold 474
13.6 Nonlocal Singularities 475
13.6.1 Multiple Cusps 475
13.7 Global Boundary Conditions 477
13.8 From Braids to Triangulations: toward a Kinematics in Higher Dimensions 481
13.8.1 Knot Theory in Three Dimensions and Beyond 481
13.8.2 From Nonintersection to Orientation Preservation 482
13.8.3 Singularities in Higher Dimensions 490
13.9 Summary 490

14 Program for Dynamical Systems Theory 493
14.1 Reduction of Dimension 494
Contents

14.2 Equivalence 496
14.3 Structure Theory 497
14.3.1 Reducibility of Dynamical Systems 497
14.4 Germs 498
14.5 Unfolding 500
14.6 Paths 502
14.7 Rank 502
14.7.1 Stretching and Squeezing 503
14.8 Complex Extensions 504
14.9 Coxeter–Dynkin Diagrams 504
14.10 Real Forms 506
14.11 Local vs. Global Classification 507
14.12 Cover–Image Relations 508
14.13 Symmetry Breaking and Restoration 508
14.13.1 Entrainment and Synchronization 509
14.14 Summary 511

Appendix A Determining Templates from Topological Invariants 513
A.1 The Fundamental Problem 513
A.2 From Template Matrices to Topological Invariants 515
A.2.1 Classification of Periodic Orbits by Symbolic Names 515
A.2.2 Algebraic Description of a Template 516
A.2.3 Local Torsion 517
A.2.4 Relative Rotation Rates: Examples 517
A.2.5 Relative Rotation Rates: General Case 519
A.3 Identifying Templates from Invariants 523
A.3.1 Using an Independent Symbolic Coding 524
A.3.2 Simultaneous Determination of Symbolic Names and Template 527
A.4 Constructing Generating Partitions 531
A.4.1 Symbolic Encoding as an Interpolation Process 531
A.4.2 Generating Partitions for Experimental Data 535
A.4.3 Comparison with Methods Based on Homoclinic Tangencies 536
A.4.4 Symbolic Dynamics on Three Symbols 538
A.5 Summary 539

Appendix B Embeddings 541
B.1 Diffeomorphisms 541
B.2 Mappings of Data 543
B.2.1 Too Little Data 543
B.2.2 Too Much Data 545
B.2.3 Just the Right Amount of Data 547
B.3 Tests for Embeddings 547
B.4 Tests of Embedding Tests 549
B.4.1 Trial Data Set 549
B.5 Geometric Tests for Embeddings 550
B.5.1 Fractal Dimension Estimation 550
Contents

B.5.2 False Near Neighbor Estimates 553
B.6 Dynamical Tests for Embeddings 554
B.7 Topological Test for Embeddings 555
B.8 Postmortem on Embedding Tests 557
B.8.1 Generality 557
B.8.2 Computational Load 557
B.8.3 Variability 558
B.8.4 Statistics 559
B.8.5 Parameters 560
B.8.6 Noise 560
B.8.7 The Self-Intersection Problem 561
B.8.8 Reliability and Limitations 561
B.9 Stationarity 562
B.10 Beyond Embeddings 563
B.11 Summary 563

Appendix C Frequently Asked Questions 565
C.1 Is Template Analysis Valid for Non-Hyperbolic Systems? 565
C.2 Can Template Analysis Be Applied to Weakly Dissipative Systems? 566
C.3 What About Higher-Dimensional Systems? 567

References 569

Index 581