Contents

Preface XI
List of Contributors XIII
Glossary and Acronyms XV

Part One Introduction 1

1 Introduction and Historical Perspective 3
Markus Böttcher, Daniel E. Harris and Henric Krawczynski
1.1 A Brief History of Jets 3
1.1.1 Synchrotron Emission as the Primary Process
for Continuum Radio Sources 4
1.1.2 Occurrence/Ubiquity of Radio Jets 5
1.1.3 Origin of the Notion that SMBHs Reside in All Galactic Nuclei 6
1.1.4 Working Out of Relativistic Effects 6
1.1.5 Microquasars 6
1.2 Jets at Optical, UV, X-Rays and γ-Rays 7
1.2.1 HST Optical/UV Jets 7
1.2.2 X-Ray Jets 8
1.2.3 Jets in γ-Rays 9
1.2.4 Gamma-Ray Bursts 10
1.3 The Role of Simulations 10
1.4 Jet Composition 12
1.4.1 Options 13
1.4.2 Constraints 13
1.5 Some Things (We Think) We Know, and Some (We Know) We Don’t 14
References 15

Part Two Theory Basics 17

2 Special Relativity of Jets 19
Markus Böttcher
2.1 Space-Time, Four-Vectors, and Lorentz Invariance 19
2.1.1 Interaction Thresholds 22
2.2 Lorentz Transformations 25
Contents

2.3 Relativistic Jet Diagnostics 32
 2.3.1 Size Constraint from Variability 32
 2.3.2 Superluminal Motion 33
 2.3.3 Lorentz Factor and Viewing Angle Estimates 35

References 38

3 Radiation Processes 39
 Markus Böttcher and Anita Reimer
 3.1 Radiative Transfer: Definitions 39
 3.1.1 Radiative Flux, Intensity, Energy Density 40
 3.1.2 The Radiative Transfer Equation 41
 3.2 Nonthermal Emission Processes 43
 3.2.1 Synchrotron Radiation 44
 3.2.2 Compton Scattering 49
 3.2.3 γγ Absorption and Pair Production 59
 3.2.4 γ-Hadron Interactions 65
 3.3 Electromagnetic Cascades 75

References 79

4 Central Engines: Acceleration, Collimation and Confinement of Jets 81
 Serguei Komissarov
 4.1 Central Engine 81
 4.1.1 Bondi Flow 81
 4.1.2 Disk Accretion 83
 4.1.3 The Eddington Limit 86
 4.1.4 Fuel Supply 88
 4.2 Magnetic Fields 90
 4.2.1 Basics 90
 4.2.2 Powering Magnetic Winds and Jets 92
 4.2.3 The Blandford–Znajek Mechanism 96
 4.3 Confinement, Collimation, and Acceleration of Jets 103
 4.3.1 Acceleration in Supersonic Regime 104
 4.3.2 Acceleration and Differential Collimation 105
 4.3.3 Jets and Magnetic Towers 111

References 112

Part Three Phenomenology 115

5 Observational Details: Radio 117
 A.H. Bridle and M.H. Cohen
 5.1 Overall Structures of Radio Sources 117
 5.1.1 Terminology 120
 5.2 Parsec-Scale Jets 121
 5.2.1 One-Sided Jets 121
 5.2.2 Two-Sided Jets 125
 5.2.3 VLBI Surveys 126

References 128
5.2.5 Relativistic Beams 130
5.2.6 Statistical Studies of Compact Jets with VLBI 133
5.2.7 Spine-Sheath Configuration 135
5.3 Kiloparsec-Scale Jets 135
5.3.1 Correlations with Extended Structure and Luminosity 135
5.3.2 The Two Jet “Flavors” 136
5.3.3 Internal Structures of Kiloparsec-Scale Radio Jets 137
5.3.4 Jet Bending on Kiloparsec Scales 140
5.4 Modeling Jet Kinematics from Radio Data 140
5.4.1 Intensity Asymmetry Modeling: Velocity-Angle Degeneracy 141
5.4.2 Polarization Asymmetry Modeling: Resolving the Degeneracy 141
5.4.3 Velocity Fields in Weak-Flavor Jets 144
5.4.4 Magnetic Field Evolution in Weak-Flavor Jets 145
5.4.5 Emissivity Evolution in Weak-Flavor Jets 146
5.4.6 Mass, Momentum and Energy Fluxes 146
5.4.7 Comparisons with Strong-Flavor Jets 147
5.5 Backflow in Bilobed FR I Sources? 148
References 149

6 Optical, Infrared and UV Observations 153
Eric Perlman
6.1 A Historical Perspective 153
6.2 Studies of Sample Properties 156
6.3 Source Morphologies, Superluminal Motion and Variability 159
6.4 Optical and Broadband Spectra 166
6.5 Polarimetry 173
6.6 Conclusion 181
References 182

7 Observational Details: X-Rays 185
Rita Sambruna and Daniel E. Harris
7.1 Introduction 185
7.1.1 The Dawn 185
7.1.2 The Chandra X-Ray Observatory 186
7.2 X-Ray Jets at Higher Luminosities 187
7.2.1 The First Chandra Jet 187
7.2.2 A “New” Model: IC on the Cosmic Microwave Background Photons 190
7.2.3 Challenges for the IC/CMB Model 192
7.2.4 Alternative Scenarios to the IC/CMB 193
7.2.5 Jets at High-z 194
7.3 X-Ray Jets at Lower Luminosities 196
7.3.1 Morphologies and Emission Process 196
7.3.2 A Case Study: M 87 197
7.4 X-Ray Jets at Intermediate Luminosities 201
7.4.1 Detection of X-Ray Jets in BL Lacs 201
7.5 X-Ray Emission Processes 203
Contents

7.5.1 Challenges for Synchrotron Models 204
7.5.2 Estimating Synchrotron Parameters 204
7.5.3 Synchrotron Self-Compton Emission 205
7.5.4 IC Emission from Photons Originating in Other Components 206
7.5.5 IC/CMB Emission from Jets with Large Γ 206
7.5.6 Estimating IC/CMB Parameters 207
7.6 Summary, Conclusions, Future Work 208
7.6.1 The Nature of Offsets and Spectral Progressions 209
7.6.2 The Nature of Knots 209
7.6.3 Future Possibilities 210
References 211

8 Unresolved Emission from the Core: Observations and Models 215
Henric Krawczynski, Markus Böttcher and Anita Reimer
8.1 Introduction 215
8.2 Emission from Various Nonjet Components 216
8.3 Emission from the Inner Jet 218
8.3.1 Blazars 218
8.3.2 Blazar Models 220
8.3.3 Blazar Multiwavelength Observations 234
8.4 Conclusions and Outlook 239
References 240

Part Four Particle Acceleration in Turbulent Magnetohydrodynamic Shocks 245
9 Particle Acceleration in Turbulent Magnetohydrodynamic Shocks 247
Matthew G. Baring
9.1 Introduction 247
9.2 Electromagnetic Turbulence in Jet Shocks 248
9.3 Structure of Relativistic Shocks 250
9.3.1 Relativistic Thermal Gases 253
9.3.2 Hydrodynamic Jump Conditions 256
9.3.3 MHD Rankine–Hugoniot Conditions 260
9.4 The Character of Diffusive Acceleration in Relativistic Shocks 268
9.4.1 The Principle of the Fermi Mechanism 269
9.4.2 Diffusive Acceleration in Parallel, Relativistic Shocks 272
9.4.3 Diffusive Acceleration in Oblique, Relativistic Shocks 277
9.4.4 Shock Drift Acceleration 282
9.4.5 Acceleration Time Scales 284
9.4.6 Nonlinear Acceleration Effects 288
9.5 Acceleration by Magnetic Reconnection 290
9.6 Outstanding Questions 291
References 293
Contents

10 Simulations of Jets from Active Galactic Nuclei and Gamma-Ray Bursts 297
Miguel A. Aloy and Petar Mimica

10.1 Governing Equations 298
10.2 Numerical Algorithms 300
10.2.1 Specific Numerical Methods for MHD 301
10.3 Basic Numerical Modeling 303
10.3.1 Jet Stability 304
10.3.2 Nonlinear Jet Dynamics 308
10.3.3 GRB Jets 317
10.4 Numerics Confront Observations: Emission from Synthetic Jets 321
10.4.1 Radiative Processes and Relativistic Effects 321
10.4.2 Classification of Algorithms for Computing the Jet Emission 322
10.4.3 Applications 325
10.5 Summary and Outlook 331

References 332

11 Jet Structure, Collimation and Stability: Recent Results from Analytical Models and Simulations 341
Rony Keppens and Zakaria Meliani

11.1 Exact Models for Collimated Jets 341
11.1.1 Concepts for Curved Space-Time 342
11.1.2 General Relativistic Magnetohydrodynamics 343
11.1.3 3 + 1 for Schwarzschild Black Hole Surroundings 344
11.1.4 Self-Similar Models: Classical to General Relativistic MHD 347
11.1.5 Models for Jets from Rotating Black Holes 349
11.2 Numerical Findings on Propagation, Deceleration, Collimation 351
11.2.1 Entrainment and Deceleration 352
11.2.2 Fanaroff–Riley I/II and HYMORS: ISM Influences 353
11.2.3 Jet Composition and EOS 355
11.2.4 Magnetic Field Topologies 356
11.3 Two-Component Jets: a Recurring Paradigm 358
11.3.1 Observational and Theoretical Arguments 358
11.3.2 Aspects Deducing from Modern Simulations 360
11.4 Stability Studies for Radially Structured Jets 360
11.4.1 Spine-Sheath Models 360
11.4.2 Two-Component Jets and FR I/II Classification 362
11.5 Further Challenges for Modern Simulations 364

References 366

12 Jets and AGN Feedback 369
Christopher S. Reynolds

12.1 Introduction 369
12.2 Galaxy Formation and Two Classic Problems 371
12.2.1 Cosmological Background 371
12.2.2 The Overcooling Problem 374
Contents

12.2.3 The Cooling Flow Problem 376
12.3 Jet–ICM Interactions in Galaxy Clusters 379
12.3.1 Theoretical Expectations 379
12.3.2 Jet-Blown Cavities 382
12.3.3 Shocks and Sound Waves 385
12.4 Thermal Conduction, MHD Instabilities, and an Alternative View of AGN Feedback 389
12.4.1 The Near Impossibility of a Stable Hydrostatic Equilibrium 391
12.4.2 MHD Models of Cluster Cooling Cores and an Alternative Role for AGN 392
References 393

13 Summary and Outlook 395

Markus Böttcher, Daniel E. Harris and Henric Krawczynski

13.1 The Core: Insights into the Processes of Jet Formation, Acceleration, and Collimation 395
13.2 Large-Scale Jets: Insights into Their Structure and Make-Up and Their Impact on Their Hosts 397
13.3 Theory and Simulations 398

Appendix A Physical and Astrophysical Constants 401

Markus Böttcher, Daniel E. Harris and Henric Krawczynski

Index 403