Contents

Preface XIX
List of Contributors XXIII
Acknowledgments XXIX
Abbreviations XXXIII

Part one Introduction 1

1 Introduction to Thin-Film Photovoltaics 3
 Thomas Kirchartz and Uwe Rau
1.1 Introduction 3
1.2 The Photovoltaic Principle 5
1.2.1 The Shockley–Queisser Theory 5
1.2.2 From the Ideal Solar Cell to Real Solar Cells 9
1.2.3 Light Absorption and Light Trapping 10
1.2.4 Charge Extraction 12
1.2.5 Nonradiative Recombination 16
1.3 Functional Layers in Thin-Film Solar Cells 18
1.4 Comparison of Various Thin-Film Solar-Cell Types 20
1.4.1 Cu(In,Ga)Se₂ 20
1.4.1.1 Basic Properties and Technology 20
1.4.1.2 Layer-Stacking Sequence and Band Diagram of the Heterostructure 22
1.4.2 CdTe 23
1.4.2.1 Basic Properties and Technology 23
1.4.2.2 Layer-Stacking Sequence and Band Diagram of the Heterostructure 24
1.4.3 Thin-Film Silicon Solar Cells 25
1.4.3.1 Hydrogenated Amorphous Si (a-Si:H) 25
1.4.3.2 Metastability in a-Si:H: The Staebler–Wronski Effect 27
1.4.3.3 Hydrogenated Microcrystalline Silicon (μc-Si:H) 27
4.8.1 DLTS of Thin-Film PV Devices 94
4.9 Admittance Spectroscopy 95
4.10 Drive Level Capacitance Profiling 97
4.11 Photocapacitance 98
4.12 The Meyer–Neldel Rule 99
4.13 Spatial Inhomogeneities and Interface States 100
4.14 Metastability 102
References 102

Part Three Materials Characterization 107

5 Characterizing the Light-Trapping Properties of Textured Surfaces with Scanning Near-Field Optical Microscopy 109
Karsten Bittkau
5.1 Introduction 109
5.2 How Does a Scanning Near-Field Optical Microscope Work? 110
5.3 Light Scattering in the Wave Picture 112
5.4 The Role of Evanescent Modes for Light Trapping 113
5.5 Analysis of Scanning Near-Field Optical Microscopy Images by Fast Fourier Transformation 116
5.6 How to Extract Far-Field Scattering Properties by Scanning Near-Field Optical Microscopy? 120
5.7 Conclusion 122
References 122

6 Spectroscopic Ellipsometry 125
Sylvain Marsillac, Michelle N. Sestak, Jian Li, and Robert W. Collins
6.1 Introduction 125
6.2 Theory 127
6.2.1 Polarized Light 127
6.2.2 Reflection from a Single Interface 128
6.3 Ellipsometry Instrumentation 129
6.3.1 Rotating Analyzer SE for Ex-Situ Applications 130
6.3.2 Rotating Compensator SE for Real-Time Applications 131
6.4 Data Analysis 133
6.4.1 Exact Numerical Inversion 133
6.4.2 Least-Squares Regression 134
6.4.3 Virtual Interface Analysis 134
6.5 RTSE of Thin Film Photovoltaics 134
6.5.1 Thin Si:H 135
6.5.2 CdTe 139
6.5.3 CuInSe₂ 141
6.6 Summary and Future 145
6.7 Definition of Variables 145
References 146
Photoluminescence Analysis of Thin-Film Solar Cells

Thomas Unold and Levent Gütay

7.1 Introduction
7.2 Experimental Issues
7.2.1 Design of the Optical System
7.2.2 Calibration
7.2.3 Cryostat
7.3 Basic Transitions
7.3.1 Excitons
7.3.2 Free-Bound Transitions
7.3.3 Donor–Acceptor Pair Recombination
7.3.4 Potential Fluctuations
7.3.5 Band–Band Transitions
7.4 Case Studies
7.4.1 Low-Temperature Photoluminescence Analysis
7.4.2 Room-Temperature Measurements: Estimation of \(V_{oc} \) from PL Yield
7.4.3 Spatially Resolved Photoluminescence: Absorber Inhomogeneities

References

Steady-State Photocarrier Grating Method

Rudolf Brüggemann

8.1 Introduction
8.2 Basic Analysis of SSPG and Photocurrent Response
8.2.1 Optical Model
8.2.2 Semiconductor Equations
8.2.3 Diffusion Length: Ritter–Zeldov–Weiser Analysis
8.2.3.1 Evaluation Schemes
8.2.4 More Detailed Analyses
8.2.4.1 Influence of the Dark Conductivity
8.2.4.2 Influence of Traps
8.2.4.3 Minority-Carrier and Majority-Carrier Mobility-Lifetime Products
8.3 Experimental Setup
8.4 Data Analysis
8.5 Results
8.5.1 Hydrogenated Amorphous Silicon
8.5.1.1 Temperature and Generation Rate Dependence
8.5.1.2 Surface Recombination
8.5.1.3 Electric-Field Influence
8.5.1.4 Fermi-Level Position
8.5.1.5 Defects and Light-Induced Degradation
8.5.1.6 Thin-Film Characterization and Deposition Methods
8.5.2 Hydrogenated Amorphous Silicon Alloys
8.5.3 Hydrogenated Microcrystalline Silicon 196
8.5.4 Hydrogenated Microcrystalline Germanium 197
8.5.5 Other Thin-Film Semiconductors 197
8.6 Density-of-States Determination 198
8.7 Summary 198
References 198

9 Time-of-Flight Analysis 203
Torsten Bronger
9.1 Introduction 203
9.2 Fundamentals of TOF Measurements 204
9.2.1 Anomalous Dispersion 205
9.2.2 Basic Electronic Properties of Thin-Film Semiconductors 207
9.3 Experimental Details 208
9.3.1 Accompanying Measurements 210
9.3.1.1 Capacitance 210
9.3.1.2 Collection 212
9.3.1.3 Built-in Field 212
9.3.2 Current Decay 212
9.3.3 Charge Transient 215
9.3.4 Possible Problems 217
9.3.4.1 Dielectric Relaxation 217
9.3.5 Inhomogeneous Field 218
9.4 Analysis of TOF Results 219
9.4.1 Multiple Trapping 219
9.4.1.1 Overview of the Processes 219
9.4.1.2 Energetic Distribution of Carriers 220
9.4.2 Spatial Charge Distribution 223
9.4.2.1 Temperature Dependence 223
9.4.3 Density of States 225
9.4.3.1 Widths of Band Tails 225
9.4.3.2 Probing of Deep States 226
References 228

10 Electron-Spin Resonance (ESR) in Hydrogenated Amorphous Silicon (a-Si:H) 231
Klaus Lips, Matthias Fehr, and Jan Behrends
10.1 Introduction 231
10.2 Basics of ESR 232
10.3 How to Measure ESR 235
10.3.1 ESR Setup and Measurement Procedure 235
10.3.2 Pulse ESR 238
10.3.3 Sample Preparation 239
10.4 The g Tensor and Hyperfine Interaction in Disordered Solids 240
12.2.3 Energy-Dispersive and Wavelength-Dispersive X-Ray Spectrometry 305
12.2.4 Electron-Beam-Induced Current Measurements 307
12.2.4.1 Electron-Beam Generation 308
12.2.4.2 Charge-Carrier Collection in a Solar Cell 309
12.2.4.3 Experimental Setups 310
12.2.4.4 Critical Issues 311
12.2.5 Cathodoluminescence 312
12.2.5.1 Example: Spectrum Imaging of CdTe Thin Films 315
12.2.6 Scanning Probe and Scanning-Probe Microscopy Integrated Platform 318
12.2.7 Combination of Various Scanning Electron Microscopy Techniques 322

12.3 Transmission Electron Microscopy 323
12.3.1 Imaging Techniques 324
12.3.1.1 Bright-Field and Dark-Field Imaging in the Conventional Mode 324
12.3.1.2 High-Resolution Imaging in the Conventional Mode 325
12.3.1.3 Imaging in the Scanning Mode Using an Annular Dark-Field Detector 327
12.3.2 Electron Diffraction 327
12.3.2.1 Selected-Area Electron Diffraction in the Conventional Mode 327
12.3.2.2 Convergent-Beam Electron Diffraction in the Scanning Mode 328
12.3.3 Electron Energy-Loss Spectrometry and Energy-Filtered Transmission Electron Microscopy 329
12.3.3.1 Scattering Theory 329
12.3.3.2 Experiment and Setup 330
12.3.3.3 The Energy-Loss Spectrum 331
12.3.3.4 Applications and Comparison with EDX Spectroscopy 334
12.3.4 Off-Axis and In-Line Electron Holography 335
12.4 Sample Preparation Techniques 338
12.4.1 Preparation for Scanning Electron Microscopy 338
12.4.2 Preparation for Transmission Electron Microscopy 339
References 341

13 X-Ray and Neutron Diffraction on Materials for Thin-Film Solar Cells 347
Susan Schorr, Christiane Stephan, Tobias Törndahl, and Roland Mainz
13.1 Introduction 347
13.2 Diffraction of X-Rays and Neutron by Matter 347
13.3 Neutron Powder Diffraction of Absorber Materials for Thin-Film Solar Cells 351
13.3.1 Example: Investigation of Intrinsic Point Defects in Nonstoichiometric CuInSe₂ by Neutron Diffraction 351
13.4 Grazing Incidence X-Ray Diffraction (GIXRD) 354
13.5 Energy Dispersive X-Ray Diffraction (EDXRD) 357

References 362

14 Raman Spectroscopy on Thin Films for Solar Cells 365

Jacobo Álvarez-García, Víctor Izquierdo-Roca, and Alejandro Pérez-Rodríguez

14.1 Introduction 365
14.2 Fundamentals of Raman Spectroscopy 366
14.3 Vibrational Modes in Crystalline Materials 368
14.4 Experimental Considerations 370
14.4.1 Laser Source 370
14.4.2 Light Collection and Focusing Optics 372
14.4.3 Spectroscopic Module 372
14.5 Characterization of Thin-Film Photovoltaic Materials 373
14.5.1 Identification of Crystalline Structures 373
14.5.2 Evaluation of Film Crystallinity 377
14.5.3 Chemical Analysis of Semiconducting Alloys 378
14.5.4 Nanocrystalline and Amorphous Materials 380
14.5.5 Evaluation of Stress 382
14.6 Conclusions 383

References 384

15 Soft X-Ray and Electron Spectroscopy: A Unique “Tool Chest”

to Characterize the Chemical and Electronic Properties of Surfaces and Interfaces 387

Marcus Bär, Lothar Weinhardt, and Clemens Heske

15.1 Introduction 387
15.2 Characterization Techniques 388
15.3 Probing the Chemical Surface Structure: Impact of Wet Chemical Treatments on Thin-Film Solar Cell Absorbers 394
15.4 Probing the Electronic Surface and Interface Structure: Band Alignment in Thin-Film Solar Cells 399
15.5 Summary 405

References 405

16 Elemental Distribution Profiling of Thin Films for Solar Cells 411

Volker Hoffmann, Denis Klemm, Varvara Efimova, Cornel Venzago, Angus A. Rockett, Thomas Wirth, Tim Nunney, Christian A. Kaufmann, and Raquel Caballero

16.1 Introduction 411
16.2 Glow Discharge-Optical Emission (GD-OES) and Glow Discharge-Mass Spectroscopy (GD-MS) 413
16.2.1 Principles 413
16.2.2 Instrumentation 413
16.2.2.1 Plasma Sources 413
16.2.2.2 Plasma Conditions 415
16.2.2.3 Detection of Optical Emission 415
16.2.2.4 Mass Spectroscopy 416
16.2.3 Quantiﬁcation 416
16.2.3.1 Glow Discharge-Optical Emission Spectroscopy 416
16.2.3.2 Glow Discharge-Mass Spectroscopy 417
16.2.4 Applications 418
16.2.4.1 Glow Discharge-Optical Emission Spectroscopy 418
16.2.4.2 Glow Discharge-Mass Spectroscopy 418
16.3 Secondary Ion Mass Spectrometry (SIMS) 420
16.3.1 Principle of the Method 420
16.3.2 Data Analysis 423
16.3.3 Quantiﬁcation 425
16.3.4 Applications for Solar Cells 426
16.4 Auger Electron Spectroscopy (AES) 427
16.4.1 Introduction 427
16.4.2 The Auger Process 427
16.4.3 Auger Electron Signals 428
16.4.4 Instrumentation 429
16.4.5 Auger Electron Signal Intensities and Quantiﬁcation 431
16.4.6 Quantiﬁcation 432
16.4.7 Application 433
16.5 X-Ray Photoelectron Spectroscopy (XPS) 435
16.5.1 Theoretical Principles 435
16.5.2 Instrumentation 437
16.5.3 Application to Thin Film Solar Cells 438
16.6 Energy-Dispersive X-Ray Analysis on Fractured Cross Sections 440
16.6.1 Basics on Energy-Dispersive X-Ray Spectrometry in a Scanning Electron Microscope 440
16.6.2 Spatial Resolutions 442
16.6.3 Applications 442
16.6.3.1 Sample Preparation 445
References 445

17 Hydrogen Effusion Experiments 449
Wolfhard Beyer and Florian Einsele
17.1 Introduction 449
17.2 Experimental Setup 450
17.3 Data Analysis 454
17.3.1 Identification of Rate-Limiting Process 455
17.3.2 Analysis of Diffusing Hydrogen Species from Hydrogen Effusion Measurements 458
17.3.3 Analysis of H$_2$ Surface Desorption 459
17.3.4 Analysis of Diffusion-Limited Effusion 460
17.3.5 Analysis of Effusion Spectra in Terms of Hydrogen Density of States 462

17.3.6 Analysis of Film Microstructure by Effusion of Implanted Rare Gases 463

17.4 Discussion of Selected Results 467

17.4.1 Amorphous Silicon and Germanium Films 467

17.4.1.1 Material Density versus Annealing and Hydrogen Content 467

17.4.1.2 Effect of Doping on H Effusion 468

17.4.2 Amorphous Silicon Alloys: Si-C 469

17.4.3 Microcrystalline Silicon 470

17.4.4 Zinc Oxide Films 471

17.5 Comparison with Other Experiments 471

17.6 Concluding Remarks 472

References 473

Part Four Materials and Device Modeling 477

18 Ab-Initio Modeling of Defects in Semiconductors 479

Karsten Albe, Péter Ágoston, and Johan Pohl

18.1 Introduction 479

18.2 Density Functional Theory and Methods 480

18.2.1 Basis Sets 480

18.2.2 Functionals for Exchange and Correlation 481

18.2.2.1 Local Approximations 481

18.2.2.2 Functionals Beyond LDA/GGA 481

18.3 Methods Beyond DFT 483

18.4 From Total Energies to Materials’ Properties 485

18.5 Ab-initio Characterization of Point Defects 486

18.5.1 Thermodynamics of Point Defects 488

18.5.2 Formation Energies from Ab-Initio Calculations 493

18.5.3 Case study: Point Defects in ZnO 494

18.6 Conclusions 497

References 497

19 One-Dimensional Electro-Optical Simulations of Thin-Film Solar Cells 501

Bart E. Pieters, Koen Decock, Marc Burgelman, Rolf Stangl, and Thomas Kirchartz

19.1 Introduction 501

19.2 Fundamentals 501

19.3 Modeling Hydrogenated Amorphous and Microcrystalline Silicon 503

19.3.1 Density of States and Transport Hydrogenated Amorphous Silicon 503

19.3.2 Density of States and Transport Hydrogenated Microcrystalline Silicon 507