Contents

Preface XI
References XII

Part One Linear Response of Low Dimensional Quantum Systems 1

1 Introduction 3
1.1 Second-Quantized Representation for Electrons 3
1.2 Second Quantization and Fock States 6
1.3 The Boson Case 6
1.4 The Fermion Case 9
1.5 The Hamiltonian of Electrons 12
1.6 Electron–Phonon Interaction 13
1.7 Effective Electron–Electron Interaction 14
1.8 Degenerate Electron Gases 16
1.9 Ground-State Energy in the High Density Limit 18
1.10 Wigner Solid 20
1.11 The Chemical Potential of an Ideal Bose Gas and Bose–Einstein Condensation 22
1.12 Problems 24
References 29

2 The Kubo–Greenwood Linear Response Theory 31
2.1 Fluctuations and Dissipation 31
2.2 Nyquist’s Relation 32
2.3 Linear Response Theory 33
2.3.1 Generalized Susceptibility 33
2.3.2 Kronig–Kramers Relations 35
2.3.3 Dielectric Function in Three Dimensions 36
2.4 The Density Matrix and Quantum Statistics 36
2.4.1 The von Neumann Density Matrix 36
2.4.2 Entropy 37
2.5 Kubo’s Theory 38
2.6 The Kubo Equation 40
2.7 Fluctuation–Dissipation Theorem 41
Contents

2.8 Applications 43
 2.8.1 Mobility and the Nernst–Einstein Relation 43
 2.8.2 Electrical Conductivity and the Nyquist Relation 45
 2.8.3 Magnetic Susceptibility 46
 2.8.4 The Langevin Equation 46
 2.8.5 Stochastic Model of Magnetic Resonance 47
 2.8.6 Gaussian Process 48
 2.9 Kinetic Equation for Elastic Processes 49
 2.9.1 Boltzmann’s Transport Equation 49
 2.9.2 The Collision Term 49
 2.9.3 Solution in the Ohmic Regime 50
 2.9.4 Conductivity and Mobility 52
 2.10 Problems 52

References 55

3 Feynman Diagrammatic Expansion 57
 3.1 General Formalism 57
 3.2 Functional Derivative Techniques 63
 3.3 Unrenormalized Expansion for G and Σ 67
 3.4 Renormalized Expansion for Self-Energy Σ 70
 3.5 The Schrödinger Equation in the Hartree–Fock Approximation 74
 3.6 Screened External Potential 75
 3.7 Retarded Polarization Function 76
 3.8 RPA for the Polarization Function 77
 3.9 Problems 78

References 81

4 Plasmon Excitations in Mesoscopic Structures 83
 4.1 Linear Response Theory and Collective Excitations 83
 4.1.1 Screening and the Self-Consistent Field Approximation 85
 4.2 A Linear Array of Nanotubes 86
 4.2.1 Tight-Binding Model 87
 4.2.2 Numerical Results and Discussion 92
 4.3 A Linear Array of Quantum Wires 93
 4.4 Coupled Half-Plane Superlattices 95
 4.4.1 Hydrodynamic Model 96
 4.4.2 Numerical Results and Discussion 99
 4.5 Problems 101

References 111

5 The Surface Response Function, Energy Loss and Plasma Instability 113
 5.1 Surface Response Function 113
 5.1.1 The Image Potential 114
 5.1.2 A Bi-Layer System 115
 5.1.3 A Dielectric Slab 117
 5.1.4 A Layered 2DEG System 118

References 111
Contents

5.2 Electron Energy Loss for a Planar Surface 119
5.2.1 Transfer-Matrix Method 120
5.2.2 Motion Parallel to the Surface 122
5.2.3 Motion Perpendicular to the Surface 122
5.2.4 The Inverse Dielectric Function Formalism 123
5.3 Plasma Instability for a Planar Surface 125
5.4 Energy Transfer in Nanotubes 132
5.4.1 Energy Loss on a Single Wall Nanotube 132
5.5 Problems 141

References 145

6 The Rashba Spin–Orbit Interaction in 2DEG 147
6.1 Introduction to Spin–Orbit Coupling 147
6.2 Spin–Orbit Coupling in the Dirac Equation 148
6.3 Rashba Spin–Orbit Coupling for a Quantum Wire 151
6.4 SOI Effects on Conductance and Electron-Diffusion Thermoelectric Power 154
6.5 Problems 156

References 157

7 Electrical Conductivity: the Kubo and Landauer–Büttiker Formulas 159
7.1 Quantum Mechanical Current 159
7.2 The Statistical Current 160
7.3 A Green’s Function Formalism 161
7.4 The Static Limit 163
7.5 Model and Single-Particle Eigenstates 164
7.6 Averaged Conductivity 167
7.7 Applications to One-Dimensional Density Modulated 2DEG 171
7.8 Scattering Theory Formalism 175
7.9 Quantum Hall Effect 176
7.10 Problems 177

References 177

8 Nonlocal Conductivity for a Spin-Split Two-Dimensional Electron Liquid 179
8.1 Introduction 179
8.2 Kubo Formula for Conductivity 180
8.3 The Self-Energy and Scattering Time 182
8.4 Drude-Type Conductivity for Spin-Split Subband Model 183
8.5 Vertex Corrections to the Local Conductivity 185
8.6 Numerical Results for Scattering Times 191
8.7 Related Results in 3D in the Absence of SOI 192

References 194

9 Integer Quantum Hall Effect 197
9.1 Basic Principles of the Integer Quantum Hall Effect 197
9.1.1 The Hall Effect 197
Contents

9.1.2 The Quantum Hall Effect 198
9.1.3 An Idealized Model 199
9.1.4 Effect of Finite Temperature 201
9.1.5 Effect of Impurities 202
9.1.6 Application of the Quantum Hall Effect 202
9.2 Fundamental Theories of the IQHE 203
9.2.1 Energy Spectrum and Wave functions 203
9.2.2 Perturbation and Scattering Theory 205
9.2.3 Gauge Symmetry Approach 206
9.2.4 The QHE in a Periodic Potential 207
9.2.5 Topological Equivalence of the Quantum Hall Conductance 208
9.3 Corrections to the Quantization of the Hall Conductance 210
9.3.1 Properties of the Green’s Function 210
References 212

10 Fractional Quantum Hall Effect 215
10.1 The Laughlin Ground State 215
10.1.1 The Lowest Landau Level 215
10.1.2 Laughlin’s Wave Function 216
10.1.3 Properties of the Laughlin Wave Function 218
10.1.4 Justification of the Laughlin State 219
10.2 Elementary Excitations 220
10.2.1 Fractional Charge 220
10.2.2 The Complete Set of Quasi-Hole States 222
10.3 The Ground State: Degeneracy and Ginzburg–Landau Theory 224
10.3.1 Ground State Degeneracy 224
10.3.2 Ginzburg–Landau Theory of the Quantum Hall Effect 225
10.4 Problems 228
References 229

11 Quantized Adiabatic Charge Transport in 2D Electron Systems and Nanotubes 231
11.1 Introduction 231
11.2 Theory for Current Quantization 232
11.3 Tunneling Probability and Current Quantization for Interacting Two-Electron System 235
11.3.1 Spin Unpolarized Case 236
11.4 Adiabatic Charge Transport in Carbon Nanotubes 238
11.5 Summary and Remarks 240
References 241

12 Graphene 243
12.1 Introduction 243
12.2 Electronic Properties of Graphene 245
12.3 Graphene Nanoribbons and Their Spectrum 249
12.3.1 Zigzag Edge 251
Contents

12.3.2 Armchair Nanoribbon 253
12.4 Valley-Valve Effect and Perfect Transmission in GNR’s 255
12.5 GNR’s Electronic and Transport Properties in External Fields 262
12.6 Problems 267
12.A Energy Eigen States 270
12.B The Conductance 271
References 273

13 Semiclassical Theory for Linear Transport of Electrons 275
13.1 Roughness Scattering 276
13.1.1 Model for Elastic Scattering 277
13.1.2 Numerical Results for Roughness Scattering Effect 280
13.2 Phonon Scattering 282
13.2.1 Model for Inelastic Scattering 283
13.2.2 Numerical Results for Phonon Scattering Effect 285
13.3 Thermoelectric Power 287
13.3.1 Model for Non-equilibrium Phonons 288
13.3.2 Numerical Results for Thermoelectric Power 291
13.4 Electron–Electron Scattering 293
13.4.1 Model for Pair Scattering 293
13.4.2 Numerical Results for Coulomb Scattering Effect 295
References 298

Part Two Nonlinear Response of Low Dimensional Quantum Systems 301

14 Theory for Nonlinear Electron Transport 303
14.1 Semiclassical Theory 303
14.1.1 Transient Boltzmann Equation 303
14.1.2 Numerical Procedure 306
14.1.3 Numerical Results for Bloch Oscillations and Dynamical Localization 309
14.2 Quantum Theory 312
14.2.1 Force Balance Equation 312
14.2.2 Boltzmann Scattering Equation 315
References 318

15 Spontaneous and Stimulated Nonlinear Wave Mixing of Multi-excitons 319
15.1 Spontaneous, Stimulated, Coherent and Incoherent Nonlinear Wave Mixing 323
15.2 $n + 1$ Wave Mixing in QD Fluids and Polymer QDs Molecule Solutions 328
15.2.1 Stimulated and Spontaneous Incoherent Signals 329
15.2.2 Spontaneous Coherent Signal 330
15.3 Application to Two-Photon-Induced Signals 333
15.A Semiclassical vs. Quantum Field Derivation of Heterodyne Detected Signals 337
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.B</td>
<td>Generalized Susceptibility and Its CTPL Representation</td>
<td>340</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>342</td>
</tr>
<tr>
<td>16</td>
<td>Probing Excitons and Biexcitons in Coupled QDs by Coherent Optical Spectroscopy</td>
<td>345</td>
</tr>
<tr>
<td>16.1</td>
<td>Model Hamiltonian for Two Coupled Quantum Dots</td>
<td>346</td>
</tr>
<tr>
<td>16.2</td>
<td>Single-exciton Manifold and the Absorption Spectrum</td>
<td>348</td>
</tr>
<tr>
<td>16.3</td>
<td>Two-exciton Manifold and the 2D Spectra</td>
<td>351</td>
</tr>
<tr>
<td>16.4</td>
<td>Summary</td>
<td>357</td>
</tr>
<tr>
<td>16.B</td>
<td>The Nonlinear Exciton Equations</td>
<td>359</td>
</tr>
<tr>
<td>16.C</td>
<td>The 2D Signals</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>361</td>
</tr>
<tr>
<td>17</td>
<td>Non-thermal Distribution of Hot Electrons</td>
<td>363</td>
</tr>
<tr>
<td>17.1</td>
<td>Introduction</td>
<td>363</td>
</tr>
<tr>
<td>17.2</td>
<td>Boltzmann Scattering Equation</td>
<td>364</td>
</tr>
<tr>
<td>17.3</td>
<td>Numerical Results for Effective Electron Temperature</td>
<td>367</td>
</tr>
<tr>
<td>17.4</td>
<td>Summary</td>
<td>369</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>370</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>373</td>
</tr>
</tbody>
</table>