1 An Introduction to Nonequilibrium Plasmas at Atmospheric Pressure

Sander Nijdam, Eddie van Veldhuizen, Peter Bruggeman, and Ute Ebert

1.1 Introduction

1.1.1 Nonthermal Plasmas and Electron Energy Distributions

1.1.2 Barrier and Corona Streamer Discharges – Discharges at Atmospheric Pressure

1.1.3 Other Nonthermal Discharge Types

1.1.3.1 Transition to Sparks, Arcs, or Leaders

1.1.4 Microscopic Discharge Mechanisms

1.1.4.1 Bulk Ionization Mechanisms

1.1.4.2 Surface Ionization Mechanisms

1.1.5 Chemical Activity

1.1.6 Diagnostics

1.2 Coronas and Streamers

1.2.1 Occurrence and Applications

1.2.2 Main Properties of Streamers

1.2.3 Streamer Initiation or Homogeneous Breakdown

1.2.4 Streamer Propagation

1.2.4.1 Electron Sources for Positive Streamers

1.2.5 Initiation Cloud, Primary, Secondary, and Late Streamers

1.2.6 Streamer Branching and Interaction

1.3 Glow Discharges at Higher Pressures

1.3.1 Introduction

1.3.2 Properties

1.3.3 Studies

1.3.4 Instabilities

1.4 Dielectric Barrier and Surface Discharges

1.4.1 Basic Geometries

1.4.2 Main Properties
2 Catalysts Used in Plasma-Assisted Catalytic Processes: Preparation, Activation, and Regeneration 45
Vasile I. Parvulescu
2.1 Introduction 45
2.2 Specific Features Generated by Plasma-Assisted Catalytic Applications 46
2.3 Chemical Composition and Texture 47
2.4 Methodologies Used for the Preparation of Catalysts for Plasma-Assisted Catalytic Reactions 49
2.4.1 Oxides and Oxide Supports 49
2.4.1.1 Al₂O₃ 49
2.4.1.2 SiO₂ 50
2.4.1.3 TiO₂ 51
2.4.1.4 ZrO₂ 52
2.4.2 Zeolites 52
2.4.2.1 Metal-Containing Molecular Sieves 53
2.4.3 Active Oxides 55
2.4.4 Mixed Oxides 56
2.4.4.1 Intimate Mixed Oxides 56
2.4.4.2 Perovskites 56
2.4.5 Supported Oxides 59
2.4.5.1 Metal Oxides on Metal Foams and Metal Textiles 61
2.4.6 Metal Catalysts 62
2.4.6.1 Embedded Nanoparticles 62
2.4.6.2 Catalysts Prepared via Electroplating 62
2.4.6.3 Catalysts Prepared via Chemical Vapor Infiltration 64
2.4.6.4 Metal Wires 64
2.4.6.5 Supported Metals 65
2.4.6.6 Supported Noble Metals 66
2.5 Catalysts Forming 67
2.5.1 Tableting 67
2.5.2 Spherudizing 69
2.5.3 Pelletization 69
2.5.4 Extrusion 70
2.5.5 Foams 72
2.5.6 Metal Textile Catalysts 73
2.6 Regeneration of the Catalysts Used in Plasma Assisted Reactions 73
2.7 Plasma Produced Catalysts and Supports 74
2.7.1 Sputtering 76
3 NOx Abatement by Plasma Catalysis 89

Gérald Djéga-Mariadassou, François Baudin, Ahmed Khacef, and Patrick Da Costa

3.1 Introduction 89

3.1.1 Why Nonthermal Plasma-Assisted Catalytic NOx Remediation? 89

3.2 General deNOx Model over Supported Metal Cations and Role of NTP Reactor: “Plasma-Assisted Catalytic deNOx Reaction” 90

3.3 About the Nonthermal Plasma for NOx Remediation 96

3.3.1 The Nanosecond Pulsed DBD Reactor Coupled with a Catalytic deNOx Reactor: a Laboratory Scale Device Easily Scaled Up at Pilot Level 97

3.3.2 Nonthermal Plasma Chemistry and Kinetics 100

3.3.3 Plasma Energy Deposition and Energy Cost 102

3.4 Special Application of NTP to Catalytic Oxidation of Methane on Alumina-Supported Noble Metal Catalysts 105

3.4.1 Effect of DBD on the Methane Oxidation in Combined Heat Power (CHP) Conditions 106

3.4.1.1 Effect of Dielectric Material on Methane Oxidation 106

3.4.1.2 Effect of Water on Methane Conversion as a Function of Energy Deposition 106

3.4.2 Effect of Catalyst Composition on Methane Conversion as a Function of Energy Deposition 107

3.4.2.1 Effect of the Support on Plasma-Catalytic Oxidation of Methane in the Absence of Water in the Feed 108

3.4.2.2 Influence of Water on the Plasma-Assisted Catalytic Methane Oxidation in CHP Conditions 109

3.4.3 Conclusions 111

3.5 NTP-Assisted Catalytic NOx Remediation from Lean Model Exhausts Gases 112

3.5.1 Consumption of Oxygenates and RNOx from Plasma during the Reduction of NOx According to the Function F3: Plasma-Assisted Propene-deNOx in the Presence of Ce0.68Zr0.32O2 112

3.5.1.1 Conversion of NOx and Total HC versus Temperature (Light-Off Plot) 112

3.5.1.2 GC/MS Analysis 113

3.5.2 The NTP is Able to Significantly Increase the deNOx Activity, Extend the Operating Temperature Window while Decreasing the Reaction Temperature 114

3.5.2.1 TPD of NO for Prediction of the deNOx Temperature over Alumina without Plasma 115

3.5.2.2 Coupling of a NTP Reactor with a Catalyst (Alumina) Reactor for Catalytic-Assisted deNOx 116
3.5.3 Concept of a “Composite” Catalyst Able to Extend the deNO\textsubscript{x} Operating Temperature Window 117

3.5.4 Propene-deNO\textsubscript{x} on the “Al\textsubscript{2}O\textsubscript{3} /// Rh–Pd/Co\textsubscript{0.68}Zr\textsubscript{0.32}O\textsubscript{2} /// Ag/Co\textsubscript{0.68}Zr\textsubscript{0.32}O\textsubscript{2}” Composite Catalyst 118

3.5.4.1 NO\textsubscript{x} and C\textsubscript{3}H\textsubscript{6} Global Conversion versus Temperature 118

3.5.4.2 GC/MS Analysis of Gas Compounds at the Outlet of the Catalyst Reactor 119

3.5.5 NTP Assisted Catalytic deNO\textsubscript{x} Reaction in the Presence of a Multireductant Feed: NO (500 ppm), Decane (1100 ppmC), Toluene (450 ppmC), Propene (400 ppmC), and Propane (150 ppmC), O\textsubscript{2} (8% vol), Ar (Balance) 119

3.5.5.1 Conversion of NO\textsubscript{x} and Global HC versus Temperature 119

3.5.5.2 GC/MS Analysis of Products at the Outlet of Associated Reactors 120

3.6 Conclusions 124

Acknowledgments 125

References 125

4 VOC Removal from Air by Plasma-Assisted Catalysis-Experimental Work 131

Monica Magureanu

4.1 Introduction 131

4.1.1 Sources of VOC Emission in the Atmosphere 131

4.1.2 Environmental and Health Problems Related to VOCs 132

4.1.3 Techniques for VOC Removal 133

4.1.3.1 Thermal Oxidation 133

4.1.3.2 Catalytic Oxidation 134

4.1.3.3 Photocatalysis 134

4.1.3.4 Adsorption 135

4.1.3.5 Absorption 135

4.1.3.6 Biofiltration 135

4.1.3.7 Condensation 136

4.1.3.8 Membrane Separation 136

4.1.3.9 Plasma and Plasma Catalysis 136

4.2 Plasma-Catalytic Hybrid Systems for VOC Decomposition 137

4.2.1 Nonthermal Plasma Reactors 137

4.2.2 Considerations on Process Selectivity 139

4.2.3 Types of Catalysts 140

4.2.4 Single-Stage Plasma-Catalytic Systems 141

4.2.5 Two-Stage Plasma-Catalytic Systems 141

4.3 VOC Decomposition in Plasma-Catalytic Systems 142

4.3.1 Results Obtained in Single-Stage Plasma-Catalytic Systems 142

4.3.2 Results Obtained in Two-Stage Plasma-Catalytic Systems 150

4.3.3 Effect of VOC Chemical Structure 154

4.3.4 Effect of Experimental Conditions 155

4.3.4.1 Effect of VOC Initial Concentration 155
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.4.2</td>
<td>Effect of Humidity</td>
<td>155</td>
</tr>
<tr>
<td>4.3.4.3</td>
<td>Effect of Oxygen Partial Pressure</td>
<td>156</td>
</tr>
<tr>
<td>4.3.4.4</td>
<td>Effect of Catalyst Loading</td>
<td>157</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Combination of Plasma Catalysis and Adsorption</td>
<td>159</td>
</tr>
<tr>
<td>4.3.6</td>
<td>Comparison between Catalysis and Plasma Catalysis</td>
<td>160</td>
</tr>
<tr>
<td>4.3.7</td>
<td>Comparison between Single-Stage and Two-Stage Plasma Catalysis</td>
<td>161</td>
</tr>
<tr>
<td>4.3.8</td>
<td>Reaction By-Products</td>
<td>162</td>
</tr>
<tr>
<td>4.3.8.1</td>
<td>Organic By-Products</td>
<td>162</td>
</tr>
<tr>
<td>4.3.8.2</td>
<td>Inorganic By-Products</td>
<td>163</td>
</tr>
<tr>
<td>4.4</td>
<td>Concluding Remarks</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>165</td>
</tr>
<tr>
<td>5</td>
<td>VOC Removal from Air by Plasma-Assisted Catalysis: Mechanisms,</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>Interactions between Plasma and Catalysts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Christophe Leys and Rino Morent</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>171</td>
</tr>
<tr>
<td>5.2</td>
<td>Influence of the Catalyst in the Plasma Processes</td>
<td>172</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Physical Properties of the Discharge</td>
<td>172</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Reactive Species Production</td>
<td>174</td>
</tr>
<tr>
<td>5.3</td>
<td>Influence of the Plasma on the Catalytic Processes</td>
<td>174</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Catalyst Properties</td>
<td>174</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Adsorption</td>
<td>175</td>
</tr>
<tr>
<td>5.4</td>
<td>Thermal Activation</td>
<td>177</td>
</tr>
<tr>
<td>5.5</td>
<td>Plasma-Mediated Activation of Photocatalysts</td>
<td>178</td>
</tr>
<tr>
<td>5.6</td>
<td>Plasma-Catalytic Mechanisms</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>180</td>
</tr>
<tr>
<td>6</td>
<td>Elementary Chemical and Physical Phenomena in Electrical Discharge</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>Plasma in Gas–Liquid Environments and in Liquids</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bruce R. Locke, Petr Lukes, and Jean-Louis Brisset</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>185</td>
</tr>
<tr>
<td>6.2</td>
<td>Physical Mechanisms of Generation of Plasma in Gas–Liquid Environments and Liquids</td>
<td>188</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Plasma Generation in Gas Phase with Water Vapor</td>
<td>188</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Plasma Generation in Gas–Liquid Systems</td>
<td>189</td>
</tr>
<tr>
<td>6.2.2.1</td>
<td>Discharge over Water</td>
<td>189</td>
</tr>
<tr>
<td>6.2.2.2</td>
<td>Discharge in Bubbles</td>
<td>191</td>
</tr>
<tr>
<td>6.2.2.3</td>
<td>Discharge with Droplets and Particles</td>
<td>192</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Plasma Generation Directly in Liquids</td>
<td>193</td>
</tr>
<tr>
<td>6.3</td>
<td>Formation of Primary Chemical Species by Discharge Plasma in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contact with Water</td>
<td></td>
</tr>
<tr>
<td>6.3.1</td>
<td>Formation of Chemical Species in Gas Phase with Water Vapor</td>
<td>199</td>
</tr>
<tr>
<td>6.3.1.1</td>
<td>Gas-Phase Chemistry with Water Molecules</td>
<td>201</td>
</tr>
</tbody>
</table>
Contents

7.4 Aqueous-Phase Plasma-Catalytic Processes 279
7.4.1 Iron 280
7.4.1.1 Catalytic Cycle of Iron in Plasmachemical Degradation of Phenol 282
7.4.2 Platinum 284
7.4.2.1 The Role of Platinum as a Catalyst in Fenton’s Reaction 285
7.4.3 Tungsten 286
7.4.4 Titanium Dioxide 288
7.4.5 Activated Carbon 290
7.4.6 Silica Gel 291
7.4.7 Zeolites 291
7.5 Concluding Remarks 292
Acknowledgments 293
References 293

8 Biological Effects of Electrical Discharge Plasma in Water and in Gas–Liquid Environments 309
Petr Lukes, Jean-Louis Brisset, and Bruce R. Locke
8.1 Introduction 309
8.2 Microbial Inactivation by Nonthermal Plasma 310
8.2.1 Dry Gas Plasma 311
8.2.2 Humid Gas Plasma 313
8.2.3 Gas Plasma in Contact with Liquids 313
8.2.3.1 Discharge over Water and Hydrated Surfaces 313
8.2.3.2 Discharge with Water Spray 314
8.2.3.3 Gas Discharge in Bubbles 314
8.2.4 Plasma Directly in Water 314
8.2.5 Kinetics of Microbial Inactivation 315
8.2.5.1 Comments on Sterilization and Viability Tests 316
8.3 Chemical Mechanisms of Electrical Discharge Plasma Interactions with Bacteria in Water 317
8.3.1 Bacterial Structure 319
8.3.2 Reactive Oxygen Species 320
8.3.2.1 Hydroxyl Radical 320
8.3.2.2 Hydrogen Peroxide 321
8.3.3 Reactive Nitrogen Species 324
8.3.3.1 Peroxynitrite 325
8.3.4 Post-discharge Phenomena in Bacterial Inactivation 327
8.4 Physical Mechanisms of Electrical Discharge Plasma Interactions with Living Matter 330
8.4.1 UV Radiation 331
8.4.2 X-Ray Emission 332
8.4.3 Shockwaves 332
8.4.4 Thermal Effects and Electrosurgical Plasmas 334
8.4.5 Electric Field Effects and Bioelectrics 335
8.5 Concluding Remarks 336
Acknowledgments 337
References 337

9 Hydrogen and Syngas Production from Hydrocarbons 353
Moritz Heintze

9.1 Introduction: Plasma Catalysis 353
Requirements 354
9.2.1 Steam Reforming: SR 355
9.2.2 Partial Oxidation: POX 356
9.2.3 Dry Carbon Dioxide Reforming: CDR 357
9.2.4 Pyrolysis 357
9.3 Description and Evaluation of the Process 358
9.3.1 Materials Balance: Conversion, Yield, and Selectivity 358
9.3.2 Energy Balance: Energy Requirement and Efficiency 359
9.4 Plasma-Assisted Reforming 360
9.4.1 Steam Reforming 360
9.4.1.1 Conversion of Methane 360
9.4.1.2 Conversion of Higher Hydrocarbons 362
9.4.1.3 Conversion of Oxygenates 363
9.4.2 Partial Oxidation 365
9.4.2.1 Conversion of Methane 365
9.4.2.2 Conversion of Higher Hydrocarbons 367
9.4.3 Carbon Dioxide Dry Reforming 369
9.4.3.1 Reforming of Methane to Syngas 369
9.4.3.2 Coupling to Higher Hydrocarbons 372
9.4.3.3 Reforming of Higher Hydrocarbons 372
9.4.4 Plasma Pyrolysis 373
9.4.4.1 Methane Pyrolysis to Hydrogen and Carbon 373
9.4.4.2 Production of Acetylene 374
9.4.4.3 Pyrolysis of Oxygenates 377
9.4.5 Combined Processes 377
9.4.5.1 Autothermal Reforming of Methane 378
9.4.5.2 Autothermal Reforming of Liquid Fuels 378
9.4.5.3 Reforming with Carbon Dioxide and Oxygen 381
9.4.5.4 Reforming with Carbon Dioxide and Steam 381
9.4.5.5 Other Feedstock 381
9.5 Summary of the Results and Outlook 382
References 384

Index 393