Contents

Preface XV
List of Contributors XVII

1 Carbon Dioxide: Utilization Options to Reduce its Accumulation in the Atmosphere 1
Michele Aresta
1.1 Carbon Dioxide Emission 1
1.2 The Accumulation of CO₂ in the Atmosphere, and the Effects that We Fear 1
1.3 Technologies to Reduce CO₂ Accumulation in the Atmosphere 4
1.4 The Utilization of CO₂ 6
1.5 Conditions for Using CO₂ 8
1.6 CO₂: Sources and Prices 8
1.7 The Potential for CO₂ Utilization, and the Content of This Book 9
1.8 The Need for Research to Speed an Exploitation of the Utilization Option 11
References 13

2 Utilization of Dense Carbon Dioxide as an Inert Solvent for Chemical Syntheses 15
Alessandro Galia and Giuseppe Filardo
2.1 Introduction 15
2.2 Dense Carbon Dioxide as Solvent Medium for Chemical Processes 15
2.3 Enzymatic Catalysis in Dense Carbon Dioxide 18
2.4 Other Reactions in Dense Carbon Dioxide 19
2.5 Polymer Synthesis in Supercritical Carbon Dioxide 20
2.5.1 Chain Polymerizations: Synthesis of Fluoropolymers 22
2.5.2 Step Polymerizations: Synthesis of Biodegradable Polymers 26
2.6 Conclusions 27
Acknowledgments 27
References 28
Contents

3 Autotrophic Carbon Fixation in Biology: Pathways, Rules, and Speculations 33

Ivan A. Berg, Daniel Kockelkorn, W. Hugo Ramos-Vera, Rafael Say, Jan Zarzycki, and Georg Fuchs

3.1 Introduction 33

3.2 The Mechanisms of CO₂ Fixation 34

3.2.1 The Calvin–Benson–Bassham (CBB) Cycle 34

3.2.2 The Reductive Citric Acid Cycle (Arnon–Buchanan Cycle) 37

3.2.3 The Reductive Acetyl-CoA Pathway (Wood–Ljungdahl Pathway) 39

3.2.4 The 3-Hydroxypropionate/Malyl-CoA Cycle 40

3.2.5 The 3-Hydroxypropionate/4-Hydroxybutyrate Cycle 42

3.2.6 The Dicarboxylate/4-Hydroxybutyrate Cycle 44

3.3 Rules to Explain the Diversity 46

3.4 Evolutionary Aspects 49

3.5 Chemical Aspects of CO₂ Fixation 50

Acknowledgments 51

References 51

4 Carbon Dioxide Coordination Chemistry and Reactivity of Coordinated CO₂ 55

Joëlle Mascetti

4.1 Introduction 55

4.2 Carbon Dioxide Bonding to Metals 56

4.3 Synthesis and Structure of CO₂ Complexes 59

4.3.1 Low-Temperature Matrix Isolation and Theoretical Studies 59

4.3.2 Synthesis of Stable Complexes 64

4.3.2.1 End-On Complexes 65

4.3.2.2 Side-On Complexes 67

4.3.2.3 Bridged Complexes 67

4.3.2.4 Bridged Complexes Obtained by In-situ Synthesis 67

4.4 Reactivity of CO₂ Complexes 69

4.4.1 C–O Bond Cleavage and O Transfer 70

4.4.2 Reactions with Electrophiles 72

4.4.3 Reactions with Nucleophiles 73

4.5 CO₂ Complexes as Reaction Intermediates in CO₂ Utilization Processes 75

4.5.1 Oxidative Coupling Reactions 76

4.5.2 Reduction Reactions 79

4.5.3 Catalytic Processes 81

4.5.4 Bioinspired Reactions 82

4.6 Conclusions 84

Acknowledgments 85

References 85
5 Main Group Element- and Transition Metal-Promoted Carboxylation of Organic Substrates (Alkanes, Alkenes, Alkynes, Aromatics, and Others) 89
Thomas Zevaco and Eckhard Dinjus
5.1 Introduction 89
5.2 Formation of Aromatic Carboxylic Acids: The Kolbe–Schmitt Synthesis 90
5.2.1 Kolbe–Schmitt Synthesis: Generalities 90
5.2.2 Reaction Parameters and Mechanistic Studies of the Kolbe–Schmitt Synthesis 91
5.2.3 Recent Applications of the Kolbe–Schmitt Carboxylation: Synthesis of 1,3-Dialkylimidazolium-2-Carboxylates 97
5.2.4 Carboxylation of C–H-Acidic Compounds 99
5.3 Reactive Organometallic Derivatives in the Synthesis of Carboxylic Acids 102
5.3.1 Generalities 102
5.3.2 Bimetallic Catalytic Systems 104
5.3.2.1 Pd/Sn Systems 104
5.3.2.2 Rh/B and Cu/B 107
5.3.2.3 Ni/Zn 108
5.4 Palladium (0)-Catalyzed Telomerization of Butadiene with CO₂: Synthesis of δ-Lactone 112
References 116

6 The Chemistry of N–CO₂ Bonds: Synthesis of Carbamic Acids and Their Derivatives, Isocyanates, and Ureas 121
Eugenio Quaranta and Michele Aresta
6.1 Introduction 121
6.2 Synthesis of Carbamic Acids and Alkylammonium Carbamates 122
6.3 Synthesis of Carbamate Esters 125
6.3.1 Transfer of Carbamate Group to Alkyl Halides 126
6.3.2 Transfer of Carbamate Group to Acylating Agents 131
6.3.3 Transfer of Carbamate Group to Alcohols 134
6.3.4 Transfer of Carbamate Group to Epoxides 138
6.3.5 Transfer of Carbamate Group to C–C Double Bonds 142
6.3.6 Transfer of Carbamate Group to C–C Triple Bonds 145
6.4 Synthesis of Isocyanates 148
6.5 Synthesis of Ureas 154
6.6 Conclusions 159
References 159

7 Synthesis of Linear and Cyclic Carbonates 169
Danielle Ballivet-Tkatchenko and Angela Dibenedetto
7.1 Introduction 169
7.2 Acyclic Organic Carbonates 170
Contents

7.2.1 Market and Production 170
7.2.2 Current Trends with CO$_2$ as Feedstock 172
7.2.3 Alcoholysis of Urea 174
7.2.4 Direct Route 175
7.2.5 The Future of CO$_2$-Based Routes to Acyclic Carbonates 180
7.3 Synthesis of Organic Cyclic Carbonates 181
7.3.1 Carboxylation of Epoxides 182
7.3.1.1 Use of Conventional Solvents 182
7.3.1.2 Use of Ionic Liquids 184
7.3.1.3 Use of Supercritical CO$_2$ 185
7.3.1.4 Combined Reaction Media: sc-CO$_2$ and Ionic Liquids 185
7.3.2 Oxidative Carboxylation of Olefins 186
7.3.2.1 Use of Oxygen as Oxidant 186
7.3.2.2 Use of Other Oxidants 188
7.3.3 Other Synthetic Routes to Cyclic Carbonates 189
7.3.3.1 From Halohydrins 189
7.3.3.2 From Halogenated Carbonates 190
7.3.3.3 Reaction of Cyclic Ketals with Carbon Dioxide 191
7.3.4 Synthesis of Cyclic Carbonates from Propargylic Alcohols 191
7.3.5 Reaction Between Carbon Dioxide and Diols 192
7.3.6 Reaction of Urea and Diols 194
7.3.7 Reaction of Carbon Dioxide or Urea with Glycerol 195
7.3.8 Reactivity of Cyclic Alkylene Carbonates 198
7.4 Transesterification Reactions 200
7.4.1 Synthesis of Acyclic Carbonates 200
7.4.2 Synthesis of Cyclic Carbonates 204
8 Polymers from Carbon Dioxide: Polycarbonates, Polythiocarbonates, and Polyurethanes 213
8.1 Introduction 213
8.2 Historical Perspective 215
8.3 Metal Catalysts for the Copolymerization of Epoxides and CO$_2$ 215
8.4 Metal Catalysts for the Copolymerization of Oxetanes and CO$_2$ 228
8.4.1 Early Studies 228
8.4.2 Recent Studies using Transition Metal Catalysts 229
8.5 Physical Methods for the Characterization of Copolymers Produced from Epoxides or Oxetane and Carbon Dioxide 235
8.5.1 Cyclohexene Oxide Monomer 235
8.5.2 Propylene Oxide Monomer 237
8.5.3 Oxetane Monomer 239
8.6 Copolymer Isolation and Catalyst Recycling 241
8.7 Copolymerization of Carbon Disulfide and Epoxides and Episulfides 244
8.8 Copolymers from Aziridines and Carbon Dioxide 245
8.9 Concluding Remarks 245
Acknowledgments 246
References 246

9 In-Situ Study of Carbon Deposition during CO₂ Reforming of Methane for Synthesis Gas Production, Using the Tapered Element Oscillation Microbalance 249
Wie Pan and Chunshan Song
9.1 Introduction 249
9.2 Thermodynamic Analysis of Carbon Formation from CH₄ or CO 252
9.3 Thermodynamic Analysis of Carbon Formation in CO₂ Reforming of Methane 254
9.4 TEOM Measurement of Carbon Formation in CO₂ Reforming of Methane 256
9.5 TPO Analysis of Carbon Formation in CO₂ Reforming 257
9.6 TEM Analysis on Carbon Formed on Catalysts After CO₂ Reforming of Methane 259
9.7 Kinetic Study of Carbon Formation on PₐCH₄ and PₐCO in CO₂ Reforming 260
9.8 H₂O Effect on Carbon Formation in CO₂ Reforming 262
9.9 Conclusions 263
Acknowledgments 263
References 263
Appendix A9.1 264

10 Utilization of Carbon Dioxide through Nonthermal Plasma Approaches 267
Ji-Jun Zou and Chang-Jun Liu
10.1 Introduction 267
10.2 Nonthermal Plasma Phenomena 268
10.2.1 Electron/Molecular Reactions 270
10.2.2 Atom/Ion/Molecule Reactions 270
10.2.3 Heterogeneous Reactions 271
10.3 CO and/or H₂ Production from CO₂ 272
10.3.1 CO₂ Dissociation 272
10.3.2 Reforming of CH₄ with CO₂ 273
10.3.3 Reforming of Aliphatic Hydrocarbons with CO₂ 275
10.3.4 Other Reforming Reactions with CO₂ 276
10.3.5 Reduction of CO₂ 276
10.4 Hydrocarbons Synthesis from CO₂ 277
10.4.1 Oxidative Coupling of CH₄ with CO₂ 277
10.4.2 Hydrogenation of CO₂/CO to C₂ Hydrocarbons 278
10.4.3 Higher Hydrocarbons from CH₄ and CO₂ 279
10.5 Oxygenates Synthesis from CO₂ 280
10.5.1 Methanol from CO₂ Hydrogenation 280
10.5.2 Methanol from CO₂ and CH₄ 281
10.5.3 Aldehydes from CH₄ and CO₂ 282
10.5.4 Acetic Acid from CH₄ and CO₂ 282
10.5.5 Oxygenates from H₂O and CO₂ 283
10.6 Combination of Plasma with Catalyst 284
10.6.1 Catalysts in Plasma Utilization of CO₂ 284
10.6.2 Interaction Between Plasma and Catalyst 285
10.7 Summary 286
Acknowledgments 287
References 287

11 Photochemical, Electrochemical, and Photoelectrochemical Reduction of Carbon Dioxide 291
Emily Barton Cole and Andrew B. Bocarsly
11.1 Introduction 291
11.2 Homogeneous Photochemical Reduction 292
11.2.1 General Considerations 292
11.2.2 Transition Metal Complexes 294
11.2.2.1 Ruthenium Complexes 294
11.2.2.2 Rhenium Complexes 295
11.2.3 Macro cyclic Complexes 296
11.3 Electrochemical Reduction 296
11.3.1 Reduction in Aqueous Solutions at Metal Electrodes 297
11.3.1.1 Reduction to CO and HCOOH 298
11.3.1.2 Reduction to CH₃OH and Alcohols 299
11.3.1.3 Reduction to CH₄ and Hydrocarbons 300
11.3.2 Reduction in Nonaqueous Solutions at Metal Electrodes 302
11.3.3 Reduction Mediated by Metal Complexes 303
11.3.3.1 Transition Metal Complexes 303
11.3.3.2 Macro cyclic Complexes 304
11.3.3.3 Metal-Containing Enzyme-Mediating Complexes 305
11.4 Semiconductor Systems for Reduction 305
11.4.1 Photoelectrochemical Semiconductor Electrode Systems 305
11.4.1.1 Unmodified Semiconductor Electrode Interfaces 306
11.4.1.2 Modified Semiconductor Electrodes 307
11.4.1.3 Homogenous Solution Catalysts at Semiconductor Electrodes 308
11.4.2 Heterogeneous Photochemical Semiconductor Systems 309
11.4.2.1 Unmodified Semiconductor Colloids and Powders 309
11.4.2.2 Metal-Coated Semiconductor Colloids and Powders 310
11.5 Concluding Remarks and Future Directions 311
References 312
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Recent Scientific and Technological Developments in Electrochemical</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carboxylation Based on Carbon Dioxide</td>
<td>317</td>
</tr>
<tr>
<td></td>
<td>Giuseppe Silvestri and Onofrio Scialdone</td>
<td></td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>317</td>
</tr>
<tr>
<td>12.2</td>
<td>Electrocarboxylation</td>
<td>318</td>
</tr>
<tr>
<td>12.2.1</td>
<td>Electrocarboxylation of Organic Halides</td>
<td>319</td>
</tr>
<tr>
<td>12.2.2</td>
<td>Electrocarboxylation of Aromatic Ketones</td>
<td>324</td>
</tr>
<tr>
<td>12.2.3</td>
<td>Electrocarboxylation of Other Substrates</td>
<td>326</td>
</tr>
<tr>
<td>12.3</td>
<td>The Electoreduction of Carbon Dioxide in Protic Media (Water and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alcohols)</td>
<td>327</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>330</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>330</td>
</tr>
</tbody>
</table>

13	Indirect Utilization of Carbon Dioxide: Utilization of Terrestrial and	
	Aquatic Biomass	335
	Michele Aresta and Angela Dibenedetto	
13.1	Introduction	335
13.2	The Natural Carbon Cycle	336
13.3	The Utilization of Terrestrial Biomass	337
13.3.1	Residual Biomass	338
13.3.2	Cultivated Biomass	339
13.4	The First-Generation Biofuels	339
13.5	The New Generations of Biofuels	339
13.5.1	Second-Generation Biofuels	340
13.5.2	Third-Generation Biofuels	341
13.6	Implementation of the Biorefinery Concept	347
13.7	Concluding Remarks	349
	References	349

14	Fixation of Carbon Dioxide into Inorganic Carbonates: The Natural	
	and Artificial “Weathering of Silicates”	353
	Ron Zevenhoven and Johan Fagerlund	
14.1	Introduction: Inorganic Carbonate Uses and Natural Resources	353
14.2	Natural Fixation of CO$_2$ in Carbonates	355
14.3	Process Routes to Valuable Carbonate Products	357
14.3.1	Material Resources	357
14.3.2	Direct (Single-Step) Process Routes	358
14.3.3	Indirect (Single-Step) Process Routes	359
14.3.3.1	General Aspects of Calcium Carbonate Production	359
14.3.3.2	Acetic Acid Route	361
14.3.3.3	Two-Step Aqueous Carbonation of Solid Residues	362
14.3.3.4	The pH-Swing Process	363
14.4	Mineral Carbonation for Carbon Capture and Storage (CCS)	364
14.4.1	Material Resources	366
14.4.2	Direct (Single-Step) Process Routes	367
14.4.2.1 Gas–Solid Processes 367
14.4.2.2 Aqueous Solution Processes 369
14.4.3 Indirect (Multistep) Process Routes 369
14.4.3.1 Gas–Solid Processes 369
14.4.3.2 Aqueous Solution Processes 372
14.5 Other Carbonate Production Processes and Applications 374
14.5.1 Carbonation of Brines 374
14.5.2 Straightforward Carbonation 375
Acknowledgments 375
References 376

Index 381