Contents

Abbreviations ... xxi

1 Introduction ... 1
 1.1 A Historical Survey of Bond Graph Modelling 1
 1.2 Some General Aspects of Modelling Dynamic Systems 4
 1.3 Object-Oriented Physical Systems Modelling 5
 1.4 Traditional Graphical Model Representations 8
 1.4.1 Block Diagrams ... 9
 1.4.2 Signal Flow Graphs 10
 1.4.3 Networks ... 11
 1.5 Conclusion ... 12
References ... 14

2 Bond Graph Based Physical Systems Modelling 17
 2.1 Fundamentals ... 17
 2.1.1 Physical System Structure 17
 2.1.2 Physical Systems Modelling 18
 2.1.3 Multidisciplinary Engineering Systems 19
 2.1.4 Hierarchical and Recursive Modelling 20
 2.2 Nodes and Edges in Bond Graphs 21
 2.3 Bond Graph Variables and Physical Analogies 22
 2.3.1 Power Variables ... 22
 2.3.2 Analogies ... 23
 2.3.3 Energy Variables ... 28
 2.4 Orientation of Power Bonds .. 29
 2.5 Basic Bond Graph Elements and Power Port Orientations 29
 2.5.1 Power Conserving Junctions 31
 2.5.2 Ideal Power Couplers and Power Transducers 35
 2.5.3 Energy Storage Elements 42
 2.5.4 Dissipators .. 49
 2.5.5 Memristors .. 56

xiii
2.5.6 Ideal Energy Sources and Sinks 59

2.5.7 Sensors .. 62

2.6 Pseudo Bond Graphs 63

2.7 Systematic Construction of Bond Graphs 66

2.7.1 Construction of Bond graphs for Mechanical Subsystems (Translation and Fixed-axis Rotation) 66

2.7.2 Construction of Bond Graphs for Non-mechanical Subsystems .. 70

2.7.3 Simplification of Some Bond Graph Structures 81

2.8 Some Remarks on the Choice of Orientations in Bond Graphs ... 82

2.9 Conclusion ... 85

References .. 87

3 Derivation of Mathematical Models from Bond Graphs 89

3.1 On the Form of a Mathematical Model 89

3.2 The Concept of Computational Causality 92

3.2.1 The Notion of Computational Causality 92

3.2.2 Representation of Computational Causalities in Bond Graphs ... 93

3.2.3 Activated Bonds 94

3.2.4 Rules for Causality Assignment at the Ports of Bond Graph Elements .. 96

3.3 Sequential Assignment of Computational Causalities 101

3.4 On the Choice of State Variables 104

3.5 Systematic Derivation of Equations from a Bond Graph 109

3.5.1 Procedure for the Manual Derivation of Equations from a Causal Bond Graph .. 112

3.5.2 Application of the Procedure to Some Examples 112

3.6 Independent State Variables 119

3.7 Determination of the Number of Independent State Variables 123

3.8 Conclusion ... 126

References .. 128

4 Causal Bond Graphs and Forms of Mathematical Models 129

4.1 Causal Paths Between Resistive Ports 129

4.2 Some Fundamentals from the Theory of Differential-Algebraic Systems .. 134

4.3 Inserting Energy Stores into Causal Paths Between Resistive Ports 139

4.4 Causal Paths Between Storage Ports of the Same Type 142

4.5 Closed Causal Paths 145

4.6 Bond Graphs with Causal Paths from Different Classes 150

4.7 Causal Loops of Unity Loop Gain 153

4.8 Algebraic Loops due to Internal Modulation 158

4.9 The Method of Relaxed Causalities 162

4.10 Lagrange Causalities 166
Contents

6.7.2 Bicausal Bond Graphs for System Inversion 280
6.7.3 Bicausal Bond Graphs for State Estimation 282
6.8 Bond Graph Model-based Fault Detection and Isolation 282
 6.8.1 Analytical Redundancy Relations 283
 6.8.2 Structural Fault Signature Matrices 286
 6.8.3 Fault Isolation 287
 6.8.4 Residual Sinks in Bond Graph Model-based Fault Detection 288
6.9 Reduction of Model Complexity 292
 6.9.1 Model Partitioning 292
 6.9.2 Model Reduction 293
 6.9.3 Structural Model Simplification 294
6.10 Conclusion ... 297
References .. 299

7 Models of Variable Structure .. 305
 7.1 Bond Graph Models with Fixed Causalities 306
 7.1.1 Extending Element Characteristics 306
 7.1.2 Switching Between System Modes by means of Modulation 308
 7.1.3 Switched Power Junctions 313
 7.1.4 Switching Off Degrees of Freedom by Sinks of Invariant Causality 317
 7.2 Variable Causality Bond Graphs 331
 7.2.1 Ideal Switches as Another Basic Bond Graph Element 331
 7.2.2 Controlled Junctions – Hybrid Bond Graphs 337
7.3 A Combined Petri Net – Bond Graph Representation 340
7.4 Conclusion ... 346
References .. 349

8 Multibody Systems ... 353
 8.1 Brief Survey of Bond Graph Modelling of Multibody Systems 353
 8.2 Multibond Graphs .. 354
 8.2.1 Multibonds and Arrays of Bond Graph Elements 355
 8.2.2 Multiport Energy Storage Elements 356
 8.2.3 Multiport Transformers and Gyrotrons 358
 8.2.4 Rotation of a Rigid Body in Space Described by a Multiport Gyrorator 359
 8.2.5 Multiport Resistors 364
 8.2.6 Splitting a Multibond 365
 8.3 Bond Graph Modelling of the 3D Motion of Multibody Systems 366
 8.3.1 Multibond Graph of a Freely Moving Rigid Body 366
 8.3.2 Connecting Instances of the Rigid Body Model 369
 8.3.3 Multibond Graph Model of a Revolute Joint 370
 8.3.4 Multibond Graph Model of a Prismatic Joint 370
9 Bond Graph Approximation of Distributed Parameter Models 391
9.1 Approximation of a One-dimensional Distributed Parameter
Model by an Oscillator Chain 392
9.2 Brief Survey of Bond Graph Approximations of Distributed
Parameter Models .. 394
9.3 Modal Analysis .. 394
 9.3.1 The Bernoulli-Euler Beam 394
 9.3.2 A Modal Bond Graph Model of the Bernoulli-Euler Beam 397
 9.3.3 State Space Approximation 398
 9.3.4 Features of the Generic Modal Beam Bond Graph Model . 399
 9.3.5 Further Aspects of the Generic Modal Beam Bond
 Graph Model .. 400
 9.3.6 Flexible Mechanical Structures 405
9.4 Finite Element Method ... 407
 9.4.1 Classical Finite Element Method Revisited 408
 9.4.2 Bond Graph Representation of Finite Element Models ... 412
9.5 Conclusion ... 418
References .. 421

10 Bond Graph Modelling of Open Thermodynamic Systems 425
10.1 Modelling Thermodynamic Systems by Pseudo Bond Graphs ... 426
 10.1.1 Pseudo Bond Graph of a Heated Stirred Tank 427
 10.1.2 Pseudo Bond Graph of a Variable Pneumatic Control
 Volume .. 431
 10.1.3 Pseudo Bond Graph of a Compressible Fluid Flow
 Through an Orifice ... 434
 10.1.4 Pseudo Bond Graph of a Pneumatic Bridge Circuit 436
10.2 True Bond Graph Models of Thermodynamic Systems 438
 10.2.1 True Bond Graph of a Variable Pneumatic Control Volume 438
 10.2.2 True Bond Graph of a Pneumatic Outlet Orifice 445
 10.2.3 Further True Bond Graph Approaches to the Modelling
 of Thermodynamic Systems 446
11 Automated Modelling ... 469
 11.1 Continuous System Simulation Languages 470
 11.2 Object-Oriented Modelling Languages 478
 11.2.1 Connection of Submodels According to the Physical
 Structure of the System 479
 11.2.2 Algebraic Loops .. 480
 11.2.3 Algebraic Dependencies Between State Variables 480
 11.3 Bond Graph Modelling from an Object-Oriented Point of View . 482
 11.4 Describing Bond Graphs in SIDOPS 484
 11.5 Describing Bond Graphs in Modelica 490
 11.5.1 Bond Graph Power Ports and Their Interconnection 490
 11.5.2 Basic Bond Graph Elements 495
 11.5.3 Computational Causality 498
 11.5.4 Hierarchical Bond Graphs 500
 11.6 Software for Bond Graph Modelling 505
 11.6.1 ENPORT™ .. 506
 11.6.2 TUTSIM™ .. 508
 11.6.3 Bond Graph Preprocessors 511
 11.6.4 Bond Graph Toolboxes 514
 11.6.5 Integrated Modelling and Simulation Environments 515
 11.6.6 Transformation Between Different Model Description
 Forms .. 530
 11.7 Exchange and Reuse of Bond Graph Models 535
 11.7.1 Useful XML Features for the Description and Processing
 of Bond Graph Models 536
 11.7.2 Information that an Exchange Format for Bond Graphs
 Should Capture .. 537
 11.7.3 A Schema for an XML Based Description of Combined
 Bond Graph and Block Diagram Models 538
 11.7.4 Pseudo Bond Graphs in BGML 546
 11.7.5 Controlled Junctions in BGML 546
 11.7.6 Supporting the Exchange and Reuse of Submodels 547
 11.7.7 Transforming the BGML Description of a Bond Graph
 Model into a Target Language 549
 11.7.8 XML Based Bond Graph Component Model Libraries 551
 11.8 Conclusion .. 554
References .. 556