Contents

Preface
page xi

Introduction

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.1 What it is all about?</td>
<td>1</td>
</tr>
<tr>
<td>I.2 Motivation</td>
<td>2</td>
</tr>
<tr>
<td>I.3 Topologies and numerical methods</td>
<td>3</td>
</tr>
<tr>
<td>I.4 Choice of the control</td>
<td>4</td>
</tr>
<tr>
<td>I.5 Relaxation of the controllability notion</td>
<td>4</td>
</tr>
<tr>
<td>I.6 Various remarks</td>
<td>5</td>
</tr>
</tbody>
</table>

Part I Diffusion Models

1 Distributed and pointwise control for linear diffusion equations

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 First example</td>
<td>9</td>
</tr>
<tr>
<td>1.2 Approximate controllability</td>
<td>12</td>
</tr>
<tr>
<td>1.3 Formulation of the approximate controllability problem</td>
<td>14</td>
</tr>
<tr>
<td>1.4 Dual problem</td>
<td>15</td>
</tr>
<tr>
<td>1.5 Direct solution to the dual problem</td>
<td>17</td>
</tr>
<tr>
<td>1.6 Penalty arguments</td>
<td>19</td>
</tr>
<tr>
<td>1.7 L^∞ cost functions and bang-bang controls</td>
<td>22</td>
</tr>
<tr>
<td>1.8 Numerical methods</td>
<td>28</td>
</tr>
<tr>
<td>1.9 Relaxation of controllability</td>
<td>57</td>
</tr>
<tr>
<td>1.10 Pointwise control</td>
<td>62</td>
</tr>
<tr>
<td>1.11 Further remarks (I): Additional constraints on the state function</td>
<td>96</td>
</tr>
<tr>
<td>1.12 Further remarks (II): A bisection based memory saving method for</td>
<td>112</td>
</tr>
<tr>
<td>the solution of time dependent control problems by adjoint equation</td>
<td></td>
</tr>
<tr>
<td>based methodologies</td>
<td></td>
</tr>
<tr>
<td>1.13 Further remarks (III): A brief introduction to Riccati equations</td>
<td>117</td>
</tr>
<tr>
<td>based control methods</td>
<td></td>
</tr>
</tbody>
</table>
Boundary control

2.1 Dirichlet control (I): Formulation of the control problem

2.1 Dirichlet control (I): Formulation of the control problem

2.2 Dirichlet control (II): Optimality conditions and dual formulations

2.2 Dirichlet control (II): Optimality conditions and dual formulations

2.3 Dirichlet control (III): Iterative solution of the control problems

2.3 Dirichlet control (III): Iterative solution of the control problems

2.4 Dirichlet control (IV): Approximation of the control problems

2.4 Dirichlet control (IV): Approximation of the control problems

2.5 Dirichlet control (V): Iterative solution of the fully discrete dual problem

2.5 Dirichlet control (V): Iterative solution of the fully discrete dual problem

2.6 Dirichlet control (VI): Numerical experiments

2.6 Dirichlet control (VI): Numerical experiments

2.7 Neumann control (I): Formulation of the control problems and synopsis

2.7 Neumann control (I): Formulation of the control problems and synopsis

2.8 Neumann control (II): Optimality conditions and dual formulations

2.8 Neumann control (II): Optimality conditions and dual formulations

2.9 Neumann control (III): Conjugate gradient solution of the dual problem

2.9 Neumann control (III): Conjugate gradient solution of the dual problem

2.10 Neumann control (IV): Iterative solution of the dual problem

2.10 Neumann control (IV): Iterative solution of the dual problem

2.11 Neumann control of unstable parabolic systems: a numerical approach

2.11 Neumann control of unstable parabolic systems: a numerical approach

2.12 Closed-loop Neumann control of unstable parabolic systems via the Riccati equation approach

2.12 Closed-loop Neumann control of unstable parabolic systems via the Riccati equation approach

Control of the Stokes system

3.1 Generalities. Synopsis

3.1 Generalities. Synopsis

3.2 Formulation of the Stokes system. A fundamental controllability result

3.2 Formulation of the Stokes system. A fundamental controllability result

3.3 Two approximate controllability problems

3.3 Two approximate controllability problems

3.4 Optimality conditions and dual problems

3.4 Optimality conditions and dual problems

3.5 Iterative solution of the control problem

3.5 Iterative solution of the control problem

3.6 Time discretization of the control problem

3.6 Time discretization of the control problem

3.7 Numerical experiments

3.7 Numerical experiments

Control of nonlinear diffusion systems

4.1 Generalities. Synopsis

4.1 Generalities. Synopsis

4.2 Example of a noncontrollable nonlinear system

4.2 Example of a noncontrollable nonlinear system

4.3 Pointwise control of the viscous Burgers equation

4.3 Pointwise control of the viscous Burgers equation

4.4 On the controllability and the stabilization of the Kuramoto-Sivashinsky equation in one space dimension

4.4 On the controllability and the stabilization of the Kuramoto-Sivashinsky equation in one space dimension

Dynamic programming for linear diffusion equations

5.1 Introduction. Synopsis

5.1 Introduction. Synopsis

5.2 Derivation of the Hamilton–Jacobi–Bellman equation

5.2 Derivation of the Hamilton–Jacobi–Bellman equation

5.3 Some remarks

5.3 Some remarks
Part II Wave Models

6 Wave equations

6.1 Wave equations: Dirichlet boundary control
6.2 Approximate controllability
6.3 Formulation of the approximate controllability problem
6.4 Dual problems
6.5 Direct solution of the dual problem
6.6 Exact controllability and new functional spaces
6.7 On the structure of space E
6.8 Numerical methods for the Dirichlet boundary controllability of the wave equation
6.9 Experimental validation of the filtering procedure of Section 6.8.7 via the solution of the test problem of Section 6.8.5
6.10 Some references on alternative approximation methods
6.11 Other boundary controls
6.12 Distributed controls for wave equations
6.13 Dynamic programming

7 On the application of controllability methods to the solution of the Helmholtz equation at large wave numbers

7.1 Introduction
7.2 The Helmholtz equation and its equivalent wave problem
7.3 Exact controllability methods for the calculation of time-periodic solutions to the wave equation
7.4 Least-squares formulation of the problem (7.8)–(7.11)
7.5 Calculation of J'
7.6 Conjugate gradient solution of the least-squares problem (7.14)
7.7 A finite element–finite difference implementation
7.8 Numerical experiments
7.9 Further comments. Description of a mixed formulation based variant of the controllability method
7.10 A final comment

8 Other wave and vibration problems. Coupled systems

8.1 Generalities and further references
8.2 Coupled Systems (I): a problem from thermo-elasticity
8.3 Coupled systems (II): Other systems
Contents

Part III Flow Control

9 Optimal control of systems modelled by the Navier–Stokes equations: Application to drag reduction

9.1 Introduction. Synopsis
9.2 Formulation of the control problem
9.3 Time discretization of the control problem
9.4 Full discretization of the control problem
9.5 Gradient calculation
9.6 A BFGS algorithm for solving the discrete control problem
9.7 Validation of the flow simulator
9.8 Active control by rotation
9.9 Active control by blowing and suction
9.10 Further comments on flow control and conclusion

Epilogue

Further Acknowledgements

References

Index of names

Index of subjects