The Phonological Mind

Humans instinctively form words by weaving patterns of meaningless speech elements. Moreover, we do so in specific, regular ways. We contrast *dogs* and *gods*, favor *blogs* over *lbogs*. We begin forming sound-patterns at birth and, like songbirds, we do so spontaneously, even in the absence of an adult model. We even impose these phonological patterns on invented cultural technologies such as reading and writing. But why are humans compelled to generate phonological patterns? And why do different phonological systems — signed and spoken — share aspects of their design? Drawing on findings from a broad range of disciplines including linguistics, experimental psychology, neuroscience, and comparative animal studies, Iris Berent explores these questions and proposes a new hypothesis about the architecture of the phonological mind.

IRIS BERENT is a Professor of Psychology at Northeastern University, Boston. Her research concerns phonology, morphology, and reading. She has published extensively in psychological and linguistic journals.
The Phonological Mind

Iris Berent
Contents

<table>
<thead>
<tr>
<th>List of figures</th>
<th>page viii</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of tables</td>
<td>x</td>
</tr>
<tr>
<td>Copyright acknowledgements</td>
<td>xi</td>
</tr>
<tr>
<td>Preface</td>
<td>xiii</td>
</tr>
</tbody>
</table>

I Introduction

1. Genesis | 3 |

2. Instinctive phonology
 2.1 People possess knowledge of sound patterns | 9 |
 2.2 Productivity | 11 |
 2.3 Regenesis | 12 |
 2.4 Shared design | 18 |
 2.5 Unique design | 28 |
 2.6 Phonological knowledge lays the foundation for the cultural invention of writing and reading | 32 |

3. The anatomy of the phonological mind | 35 |
 3.1 The phonological grammar is a core algebraic system | 35 |
 3.2 Phonology is a core system | 44 |
 3.3 Domain-general and non-algebraic alternatives | 49 |
 3.4 Rebuttals and open questions | 55 |
 3.5 A roadmap | 58 |

II Algebraic phonology

4. How phonological categories are represented: the role of equivalence classes | 63 |
 4.1 What are phonological patterns made of? | 63 |
 4.2 The role of syllables | 65 |
 4.3 The dissociations between consonants and vowels | 73 |
 4.4 Conclusions and caveats | 82 |
Contents

5 How phonological patterns are assembled: the role of algebraic variables in phonology

5.1 How do phonological categories combine to form patterns? 84
5.2 A case study: the restriction on identical root consonants in Hebrew 87
5.3 The restriction on identical consonants generalizes to native Hebrew consonants 91
5.4 The restriction on identical consonants generalizes across the board 97
5.5 Coda: on the role of lexical analogies 111
5.6 Conclusion 113

III Universal design: phonological universals and their role in individual grammars

6 Phonological universals: typological evidence and grammatical explanations

6.1 Phonological universals in typology: primitives and combinatorial principles 119
6.2 Grammatical accounts for typological universals 123
6.3 Non-grammatical explanations for language universals 131
6.4 Why are phonological universals non-absolute? 132
6.5 Algebraic, phonological universals are autonomous from phonetic pressures 139
6.6 Conclusion 147

7 Phonological universals are mirrored in behavior: evidence from artificial language learning

7.1 Phonological interactions target segments that share features 151
7.2 Learners favor directional phonological changes 155
7.3 Learners favor phonetically grounded interactions 158
7.4 Discussion 160

8 Phonological universals are core knowledge: evidence from sonority restrictions

8.1 Grammatical universals and experimental results: correlation or causation? 165
8.2 Sonority restrictions are active in spoken languages: linguistic and typological evidence 166
8.3 Broad sonority restrictions are active in the grammars of individual speakers: experimental evidence 176
8.4 Summary and conclusions 196

IV Ontogeny, phylogeny, phonological hardware, and technology

9 Out of the mouths of babes

9.1 Computational machinery 202
9.2 Gauging core phonology: some ground rules 204
9.3 Phonological primitives 205
9.4 Universal combinatorial principles: some markedness reflexes 213
9.5 Conclusions 223
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>The phonological mind evolves</td>
<td>226</td>
</tr>
<tr>
<td>10.1</td>
<td>The human phonological instinct from a comparative perspective</td>
<td>226</td>
</tr>
<tr>
<td>10.2</td>
<td>Is phonological patterning special?</td>
<td>228</td>
</tr>
<tr>
<td>10.3</td>
<td>The evolution of the phonological mind</td>
<td>247</td>
</tr>
<tr>
<td>11</td>
<td>The phonological brain</td>
<td>251</td>
</tr>
<tr>
<td>11.1</td>
<td>Individuating cognitive functions: functional specialization vs. hardware segregation</td>
<td>251</td>
</tr>
<tr>
<td>11.2</td>
<td>The phonological network of spoken language</td>
<td>254</td>
</tr>
<tr>
<td>11.3</td>
<td>Is the phonological network dedicated to phonological computation?</td>
<td>265</td>
</tr>
<tr>
<td>11.4</td>
<td>Minds, and brains, and core phonology</td>
<td>275</td>
</tr>
<tr>
<td>12</td>
<td>Phonological technologies: reading and writing</td>
<td>280</td>
</tr>
<tr>
<td>12.1</td>
<td>Core knowledge as a scaffold for mature knowledge systems</td>
<td>280</td>
</tr>
<tr>
<td>12.2</td>
<td>Writing systems recapitulate core phonology</td>
<td>283</td>
</tr>
<tr>
<td>12.3</td>
<td>Reading recovers phonological form from print</td>
<td>287</td>
</tr>
<tr>
<td>12.4</td>
<td>Reading recruits the phonological brain network</td>
<td>295</td>
</tr>
<tr>
<td>12.5</td>
<td>Grammatical phonological reflexes in reading</td>
<td>296</td>
</tr>
<tr>
<td>12.6</td>
<td>Conclusion</td>
<td>305</td>
</tr>
<tr>
<td>13</td>
<td>Conclusions, caveats, questions</td>
<td>307</td>
</tr>
<tr>
<td>13.1</td>
<td>Phonological instincts: what needs to be explained</td>
<td>307</td>
</tr>
<tr>
<td>13.2</td>
<td>Some explanations</td>
<td>309</td>
</tr>
<tr>
<td>13.3</td>
<td>The core phonology hypothesis: some open questions</td>
<td>311</td>
</tr>
</tbody>
</table>

References 316
Index 352
Figures

2.1 The emergence of movement in ABSL (from Sandler, 2011) page 15
2.2 Two classifiers for object vs. handling of an object 16
2.3 Twinkle, Twinkle, Little Star 31
3.1 The use of atomic shapes as symbols for singleton phonemes, either specific phoneme instances (a) or phoneme categories (b) 40
3.2 The use of atomic shapes to encode geminates 41
3.3 The use of complex shapes to encode geminates 41
3.4 The representation of semantic complexity using forms that are either syntactically complex (on the left) or simple (on the right) 50
4.1 The prosodic structure of multisyllabic words 67
4.2 An illustration of the cohorts activated by the initial syllable of two Spanish words 71
4.3 Color naming as a function of the CV-skeletal structure (from Marom & Berent, 2010, Experiments 1 & 3) 78
5.1 The formation of the root smm from sm 88
5.2 Rating result for novel roots generated from nonnative consonants (from Berent et al., 2002, Experiment 2) 103
5.3 Rating result of novel roots generated from roots with the nonnative phoneme /θ/ (Data from Berent et al., 2002, Experiment 2) 105
6.1 The distinction between syllable and morphological structure in American Sign Language 144
8.1 Response accuracy in the syllable count task (from Berent et al., 2007a) 182
8.2 Response accuracy and response time to non-identity trials in the identity-judgment task (from Berent et al., 2007a) 183
8.3 The phonetic vs. phonological accounts of misidentification 188
8.4 The effect of task demands on the misidentification of ill-formed onsets (from Berent et al., 2012a) 191
List of figures

8.5 The effect of phonological ill-formedness on the identification of printed materials (from Berent & Lennertz, 2010, Experiment 1) 193
8.6 The sensitivity of Korean speakers to the sonority hierarchy in an identity-judgment task (from Berent et al., 2008) 195
9.1 The effect of markedness on response accuracy to unattested onsets in the “unsuccessful imitation” condition (Berent et al., 2011a) 223
10.1 The hierarchical structure of the Zebra Finch song (from Berwick et al., 2011) 228
10.2 Learned variations in song patterns of Swamp Sparrows (from Balaban, 1988a) 236
11.1 Two cartoon accounts of the relationship between two cognitive functions – phonology and audition – and their hardware implementation 252
11.2 Functional anatomy of left hemisphere areas engaged in the phonological processing in spoken language and their interconnectivity (from Hickok & Poeppel, 2007) 255
11.3 The design of Phillips et al.’s experiments (2000) 258
11.4 Brain responses to the phonological and acoustic control conditions in Phillips et al.’s (2000) experiments. 258
12.1 Lexical access from print 288
12.2 Reading without phonology 289
12.3 Two routes to phonology from print: assembled and addressed phonology 291
Tables

3.1 The contingency between geminate consonants and their singleton counterparts in the *UCLA Phonological Segment Inventory Database*

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>The contingency between geminate consonants and their singleton counterparts in the UCLA Phonological Segment Inventory Database</td>
<td>43</td>
</tr>
</tbody>
</table>

4.1 An illustration of the materials in illusory conjunctions
4.2 An illustration of the materials in Marom & Berent (2009)
5.1 The structure of Hebrew words
5.2 An illustration of various word classes, generated by inserting a root in various word patterns
6.1 Tone-bearing capacity of syllables in Standard Thai and Navajo as a function of the duration of the nucleus, coda, and rhyme (in ms) (from Zhang, 2004)
6.2 The distinction between syllable structure and morphological structure in spoken language
7.1 English phonemes and diphthongs (following Hayes, 2009)
7.2 The design of Finley and Badecker’s experiments (from Finley & Badecker, 2008; 2010)
7.3 The design of Wilson’s (2006) palatalization experiment

© in this web service Cambridge University Press
www.cambridge.org
I would like to thank the publishers for permission to reproduce the following material:

Figure 4.3 source: Figure 3 in M. Marom & I. Berent (2010). Phonological constraints on the assembly of skeletal structure in reading. Journal of Psycholinguistic Research, 39, 67–88.

Figure 8.4 source: Figure 5 in I. Berent, T. Lennertz & E. Balaban (2012). Language universals and misidentification: a two way street. Language and Speech, 55(3), 1–20.

Figure 8.5 source: Figure 1 in I. Berent & T. Lennertz (2010). Universal constraints on the sound structure of language: phonological or acoustic? Journal of Experimental Psychology: Human Perception & Performance, 36, 212–223.
Figure 8.6 source: Figure 2 from I. Berent, T. Lennertz, J. Jun, M. A. Moreno & P. Smolensky (2008). Language universals in human brains. *Proceedings of the National Academy of Sciences*, 105, 5321–5325.

Figure 10.1 source: Figure 1 in R. C. Berwick, K. Okanoya, G. J. L. Beckers & J. J. Bolhuis (2011). Songs to syntax: the linguistics of birdsong. *Trends in Cognitive Sciences*, 15, 113–121.

Figure 10.2 source: Figure 2 in E. Balaban (1988). Bird song syntax: learned intraspecific variation is meaningful. *Proceedings of the National Academy of Sciences of the United States of America*, 85, 3657–3660.

Figure 11.2 source: Figure 1 in G. Hickok & D. Poeppel (2007). The cortical organization of speech processing. *Nature Reviews Neuroscience*, 8, 393–402.

Table 7.1 source: Table 2.2 in B. Hayes (2009). *Introductory Phonology*. Malden, MA; Oxford: Wiley Blackwell.

Preface

This book concerns a linguistic human compulsion – our tendency to assemble words that comprise internal patterns. All natural languages manifest such patterns – no known human tongue uses only single atomic sounds as words (e.g., “a o u” for ‘I love you’). Rather, words are intricately woven from smaller meaningless elements that form systematic patterns – we contrast god with dog and blog with globe. We begin spinning these webs in the womb, and we do so prodigiously, not only for familiar words but also for ones that we have never heard before. Our instinct to form those meaningless patterns is so robust that children have been shown to generate them spontaneously, even if they have witnessed no such patterns in their own linguistic community. In fact, people impose these patterns not only on their natural linguistic communication but also on their invented cultural technologies – reading and writing. This book seeks to unveil the basis of this human compulsion.

The human capacity to weave linguistic messages from patterns of meaningless elements (typically, speech sound) is phonology. Phonology has been the subject of much previous research, mostly in linguistics and psychology. For the most part, however, these efforts have proceeded in parallel lines across different disciplines, and as a result our understanding of the phonological mind remains fragmentary. Linguists (specifically, those in the field of formal phonology) have mostly concerned themselves with the structure of the phonological grammar, but the cognitive mechanisms underlying phonological patterns are rarely considered. Psychologists, for their part, have assumed without question that phonological patterns can be adequately handled by rather simple, non-specialized computational systems, but these investigations remain largely divorced from the progress made in formal phonological theory in recent decades. This book seeks to bridge the interdisciplinary divide and reconsider phonology in a new light.

At the center of this book is a novel hypothesis regarding the architecture of the phonological mind. The discussion evaluates this hypothesis against recent advances in formal linguistics, cognitive science, neuroscience, and genetics and reviews these literatures in a manner that is accessible to readers across various disciplines. In so doing, I hope to spark renewed interest in the design of
phonological patterns and to demonstrate the benefits of an interdisciplinary approach to the study of this intricate human capacity. To facilitate dialog across disciplines, I have tried to present the material in a manner that is accessible to professionals and advanced students in either field—psychology or linguistics—who lack expertise in the neighboring discipline. This approach necessarily requires some measure of simplification. I have thus attempted to minimize the use of technical jargon; in as much as possible, I have deliberately attempted to avoid the use of phonetic transcription, and, when background information is absolutely necessary, I provide it in “Box” inserts.

Readers can choose to selectively focus on distinct portions of this book, depending on their interests. The Introduction (Part I, Chapters 1–3) provides an accessible overview of the main thesis of the book. The subsequent three parts provide more technical discussion of the different aspects of the thesis, and these sections can be read independently. Part II (Algebraic phonology, Chapters 4–5) examines the basis of the human capacity to generalize phonological knowledge by investigating the computational properties of the phonological mind. Part III (Chapters 6–8, Phonological universals) considers the design of phonological systems and the extent that they are constrained to putatively universal principles. Chapter 6 reviews linguistic evidence for phonological universals. Although the discussion targets readers with minimal linguistic expertise, this chapter is probably the heaviest on linguistic theory. Readers can therefore pick and choose, as subsequent chapters do not require detailed understanding of this one. Chapters 7–8 consider the role of grammatical phonological universals in light of experimental evidence; Chapter 7 evaluates numerous case studies, whereas Chapter 8 focuses in depth on a single case. The final part of the book, Chapters 9–12, examines phonological ontogeny (the development of phonological competence with special emphasis on the first year of life), phylogeny (a comparative analysis of “phonological” abilities across species and their evolution), hardware (brain areas mediating phonological computation and their genetic regulation) and technology (i.e., reading and writing—both typical and impaired, in dyslexia). Conclusions and caveats are presented in Chapter 13.

This book is the product of many years of research. The ideas have grown out of my interactions with several close collaborators. Steven Pinker and Gary Marcus have shaped my understanding of how the mind works, Paul Smolensky has sparked my interest in the problem of language universals, and Donca Steriade has challenged my thinking about phonology and its interactions with phonetics. These ideas, however, probably would not have materialized in a book if it weren’t for Andrew Winnard, my editor at Cambridge, who saw this volume coming well before I did. Evan Balaban, Lisa Barrett, Bronwyn Bjorkman, Judit Gervain, Bruce Hayes, Ray Jackendoff, Paul de Lacy, Joanne Miller, Steven Pinker, Wendy Sandler, and Paul Smolensky offered valuable
comments on significant portions of this manuscript – I am immensely grateful for their suggestions and encouragement. Saul Bitran and Monica Bennett have patiently proofread earlier drafts; Kristina McCarthy assisted on various technical matters; Vered Vaknin-Nusbaum has offered constant support; my students and lab assistants Athulya Aravind, Amanda Dupuis, Kimi LaSalle, Katalin Tamasi, Marriah Warren, and Xu Zhao, and two anonymous Cambridge readers have added many useful comments. I am indebted to Jacqueline French, who copyedited the entire manuscript with uncanny intelligence, sharp eye, and warm heart. Finally, Saul, Amir, and Alma Bitran have shared this journey with me. The book is dedicated to them.